Bounded Maps

Bounded Maps

Continuity and Compactness Continuity and Connectedness Bounded Maps Definition k A mapping f of a set E into R is said to bounded if there is a real number M such that jf(x)j ≤ M for all x 2 E Continuity and Compactness Continuity and Connectedness Continuous Maps of Compact Spaces Theorem Suppose f is a continuous mapping of a compact metric space X into a metric space Y . Then f (X ) is compact. Continuity and Compactness Continuity and Connectedness Closed and Bounded Sets and Compact Spaces Theorem k If f is a continuous mapping of a compact metric space X into R , then f(X ) is closed and bounded. Thus f is bounded. Continuity and Compactness Continuity and Connectedness Real Functions on Compact Metric Spaces Theorem Suppose f is a continuous real valued function on a compact metric space X and M = supp2X f (p) m = infp2X f (p) Then there exists points p; q 2 X such that f (p) = M and f (q) = m Here supp2X f (p) is the least upper bound of ff (p): p 2 X g and infp2X f (p) is the greatest lower bounded of ff (p): p 2 X g. Continuity and Compactness Continuity and Connectedness Continuous 1-1 mappings Theorem Suppose f is a continuous 1 − 1 mapping of a compact metric space X onto a metric space Y . Then the inverse mapping f −1 defined on Y by f −1(f (x)) = x (x 2 X ) is a continuous mapping of Y onto X . Continuity and Compactness Continuity and Connectedness Uniform Continuity Definition Let f be a mapping of a metric space X into a metric space Y . We say that f is uniformly continuous on X if for every > 0 there exists δ > 0 such that dY (f (p); f (q)) < for all p and q in X for which dX (p; q) < δ. Continuity and Compactness Continuity and Connectedness Uniform Continuity and Compact Metric Spaces Theorem Let f be a continuous mapping of a compact space X into a metric space Y . Then f is uniformly continuous on X . Continuity and Compactness Continuity and Connectedness Non-Compact Sets of Reals Theorem 1 Let E be a noncompact set in R . Then (a) There exists a continuous function on E which is not bounded (b) There exists a continuous bounded function on E which has no maximum If in addition E is bounded then (c) There exists a continuous function on E which is not uniformly continuous. Continuity and Compactness Continuity and Connectedness Continuity and Connectedness Theorem If f is a continuous mapping of a metric space X into a metric space Y and if E is a connected subset of X then f (E) is a connected subset of Y . Continuity and Compactness Continuity and Connectedness Continuity and Connectedness Theorem Let f be a continuous real valued function on the interval [a; b]. If f (a) < f (b) and if c is a number such that f (a) < c < f (b) then there exists a point x 2 (a; b) such that f (x) = c Note this theorem does not have a converse. I.e. it is not always the case that fact that if For all c with f (a) < c < f (b) then there exists a point x 2 (a; b) such that f (x) = c that f is then continuous..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us