Advanced Concepts and Applications of the UB-Tree

Advanced Concepts and Applications of the UB-Tree

<p>ddd d d </p><p>¨<br>INSTITUT FUR INFORMATIK </p><p>d d d d </p><ul style="display: flex;"><li style="flex:1">d</li><li style="flex:1">d</li></ul><p>d d d d d d d </p><p></p><ul style="display: flex;"><li style="flex:1">¨</li><li style="flex:1">¨</li></ul><p></p><p>d d </p><p>DER TECHNISCHEN UNIVERSITAT MUNCHEN </p><p>Advanced Concepts and Applications of the UB-Tree </p><p>Robert Josef Widhopf-Fenk </p><p>Institut fu¨r Informatik der Technischen Universit¨at Mu¨nchen </p><p>Advanced Concepts and Applications of the UB-Tree </p><p>Robert Josef&nbsp;Widhopf-Fenk </p><p>Vollsta¨ndiger Abdruck der von der Fakult¨at fu¨r Informatik der Technischen Universit¨at Mu¨nchen zur Erlangung des akademischen Grades eines </p><p>Doktors der Naturwissenschaften </p><p>genehmigten Dissertation. </p><ul style="display: flex;"><li style="flex:1">Vorsitzende: </li><li style="flex:1">Univ.-Prof. G. J. Klinker, Ph.D. </li></ul><p>Pru¨fer der Dissertation:&nbsp;1. Univ.-Prof.&nbsp;R. Bayer, Ph.D., emeritiert <br>2. Univ.-Prof.&nbsp;A. Kemper, Ph.D. </p><p>Die Dissertation wurde am 05.08.2004 bei der Technischen Universita¨t Mu¨nchen eingereicht und durch die Fakult¨at fu¨r Informatik am 07.02.2005 angenommen. </p><p>Acknowledgements </p><p>First of all, I want to thank my supervisor Rudolf Bayer for his advice, guidance, support, and patience.&nbsp;Without his invitation to be a Ph.D. student, I would have never been working on database research. <br>I owe my former colleagues in the MISTRAL project many thanks for fruitful discussions, proofreading, inspirations, and motivating me: Volker Markl, Frank Ramsak, Martin Zirkel and our “external” member Roland Pieringer. <br>I like to thank my students, Oliver Nickel, Chris Hodges and Werner Unterhofer contributing to this work by supporting the implementation of algorithms and performing experiments. <br>Special thanks to our project partners at TransAction, Teijin, GfK, and the members of the EDITH project. <br>And last but not least, many thanks to Michael Bauer, Bernd Reiner, and Charlie Hahn for discussions, distraction and small talk.&nbsp;Specifically: to&nbsp;Charlie for the ice cream; to Alex S. for the Gauloise; to Evi Kollmann for all your help, even when you were loaded with other work you always were at hand. Also thanks to everyone I accidently forgot. </p><p>To my love Birgit for your patience, for our children Matilda and Valentin, and for going through this with me! </p><p>Abstract </p><p>The UB-Tree is an index structure for multidimensional point data.&nbsp;By name, it claims to be universal, but this imposes a huge burden, as there are few things which really prove to be universal. This thesis takes a closer look at aspects where the UB-Tree is not universal at a first glance. <br>The first aspect is the discussion of space filling curves (SFC), in particular comparing the Z-curve and the Hilbert-curve.&nbsp;The Z-curve is used to cluster data indexed by the UB-Tree and we highlight its advantages in comparison to other SFCs. While the Hilbertcurve provides better clustering, the Z-curve is superior w.r. to other metrics, i.e., it is significantly more efficient to calculate addresses and the mapping of queries to SFC- segments, and it is able to space efficiently index arbitrary universes. Thus the Z-curve is more universal here. <br>The second aspect are bulk operations on UB-Trees.&nbsp;Especially for data warehousing the bulk insertion and deletion are crucial operations.&nbsp;We present efficient algorithms for incremental insertion and deletion. <br>The third aspect is the comparison of the UB-Tree with bitmap indexes used for an example data warehousing application.&nbsp;We show how performance of bitmap indexes is increased by clustering the base table according to a SFC. Still the UB-Tree proves to be superior. <br>The fourth aspect is the efficient management of data with skewed data distributions. <br>The UB-Tree adapts its partitioning to the actual data distribution, but in comparison to the R-Tree, it suffers from being not able to prune search path leading to unpopulated space (= dead space).&nbsp;This is caused by partitioning the complete universe with separators. We&nbsp;present a novel index structure, the bounding UB-Tree&nbsp;(BUB-Tree), which is a variant of the UB-Tree inheriting its worst case guarantees for the basic operations while efficiently addressing queries on dead space.&nbsp;In comparison to R-Trees, its query performance is similar while offering superior maintenance performance and logarithmic worst case guarantees, thus being more universal than the R<sup style="top: -0.3616em;">∗</sup>-Tree. <br>The last aspect addressed in this thesis is the management of spatial data.&nbsp;The UB-Tree is an index designed for point data, however also spatial objects can be indexed efficiently with it by mapping them to higher dimensional points.&nbsp;We discuss different mapping methods and their performance in comparison to the RI-Tree and R<sup style="top: -0.3615em;">∗</sup>-Tree. </p><p>Our conclusion: The UB-Tree comes closer to being an universal index than any other competing index structure.&nbsp;It is flexible, dynamic, relatively easy to integrate into a DBMS kernel, and provides logarithmic worst case guarantees for the basic operations of insertion, deletion, and update.&nbsp;By extending its concepts to the BUB-Tree it is also able to efficiently support skewed queries on skewed data distributions. </p><p>Contents </p><p></p><ul style="display: flex;"><li style="flex:1">Preface </li><li style="flex:1">1</li></ul><p></p><ul style="display: flex;"><li style="flex:1">1 Introduction </li><li style="flex:1">3</li></ul><p></p><p>344555667778<br>1.1 The&nbsp;Objective: Getting Information Fast&nbsp;. . . . . . . . . . . . . . . . . . . 1.2 The&nbsp;Problem: The Properties of Real World Data&nbsp;. . . . . . . . . . . . . . <br>1.2.1 Complex&nbsp;Structure .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Skewed&nbsp;Data Distribution&nbsp;. . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Huge&nbsp;Data Amounts&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 Continuous&nbsp;Change . . . . . . . . . . . . . . . . . . . . . . . . . . . <br>1.3 The&nbsp;Solution: Multidimensional Access Methods . . . . . . . . . . . . . . . 1.4 Objective&nbsp;and Outline of this Thesis&nbsp;. . . . . . . . . . . . . . . . . . . . . 1.5 Related&nbsp;Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <br>1.5.1 RDBMSs .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2 Multidimensional&nbsp;Access Methods . . . . . . . . . . . . . . . . . . . <br>1.6 The&nbsp;MISTRAL Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . </p><p></p><ul style="display: flex;"><li style="flex:1">2 Terminology&nbsp;and Basic Concepts </li><li style="flex:1">11 </li></ul><p></p><p>2.1 General&nbsp;Notation .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;11 <br>2.1.1 Tuple,&nbsp;Relation, Universe .&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;12 2.1.2 Query,&nbsp;Result Set, and Selectivity&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;14 <br>2.2 Storage&nbsp;Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;15 2.3 Caching&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;21 2.4 Clustering&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;21 2.5 Access&nbsp;Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;24 <br>2.5.1 Clustering&nbsp;Index, Primary Index, Secondary Index .&nbsp;. . . . . . . . .&nbsp;24 2.5.2 Address&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;25 2.5.3 Accessed&nbsp;Data .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;26 </p><p></p><ul style="display: flex;"><li style="flex:1">3 Space-filling&nbsp;Curves </li><li style="flex:1">29 </li></ul><p></p><p>3.1 Space&nbsp;Filling Curves&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;31 <br>3.1.1 Compound&nbsp;Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;32 3.1.2 Snake-Curve&nbsp;and Zig-Zag-Curve . . . . . . . . . . . . . . . . . . . .&nbsp;33 3.1.3 Fractal&nbsp;Curves .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;33 </p><p>iii iv </p><p>CONTENTS </p><p>3.1.4 Curves&nbsp;created by order preserving Bit-Permutations&nbsp;. . . . . . . .&nbsp;39 <br>3.2 Indexing&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;40 <br>3.2.1 Address&nbsp;calculations .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;41 3.2.2 Indexing&nbsp;a Space Filling Curve&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;44 3.2.3 SFC&nbsp;Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;46 <br>3.3 Related&nbsp;Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;49 <br>3.3.1 [Jag90a]&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;52 3.3.2 [MJF<sup style="top: -0.3615em;">+</sup>01] .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;53 3.3.3 [HW02]&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;54 3.3.4 [MAK02]&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;54 3.3.5 [Law00]&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;55 3.3.6 Summary&nbsp;of Related Work . . . . . . . . . . . . . . . . . . . . . . .&nbsp;57 <br>3.4 Comparison&nbsp;of SFC Properties .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;58 <br>3.4.1 Region&nbsp;Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;59 3.4.2 Summary&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;60 </p><p></p><ul style="display: flex;"><li style="flex:1">4 The&nbsp;UB-Tree </li><li style="flex:1">63 </li></ul><p></p><p>4.1 Basic&nbsp;Concepts of UB-Trees&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;63 <br>4.1.1 Z-regions&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;64 4.1.2 Range&nbsp;Query Processing&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;66 <br>4.2 UB-Tree&nbsp;Implementations .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;66 <br>4.2.1 UBAPI&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;67 </p><ul style="display: flex;"><li style="flex:1">4.2.2 Transbase </li><li style="flex:1">Hypercube . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;68 </li></ul><p>4.2.3 RFDBMS&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;68 4.2.4 Summary&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;69 <br>4.3 Bulk&nbsp;Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;71 <br>4.3.1 Introduction&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;71 4.3.2 General&nbsp;Problem Description&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;72 4.3.3 Algorithms .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;73 4.3.4 DBMS-Kernel&nbsp;Integration .&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;78 4.3.5 Performance&nbsp;Analysis .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;78 4.3.6 Performance&nbsp;Evaluation .&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;80 4.3.7 Conclusion&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;87 <br>4.4 Bulk&nbsp;Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;87 <br>4.4.1 Related&nbsp;Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;88 4.4.2 Algorithm&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;88 4.4.3 Analysis&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;92 <br>4.5 Summary .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;93 </p><p></p><ul style="display: flex;"><li style="flex:1">5 Bitmap-Indexes&nbsp;on Clustered Data </li><li style="flex:1">95 </li></ul><p></p><p>5.1 Introduction&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;96 <br>5.1.1 Encoding&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;96 5.1.2 Query&nbsp;Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;98 </p><p>CONTENTS </p><p>v<br>5.1.3 Compression&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;99 5.1.4 Maintenance&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;101 <br>5.2 Bitmaps&nbsp;on clustered data&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;102 5.3 Evaluation&nbsp;with the GfK DWH&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;103 <br>5.3.1 Maintenance&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;103 5.3.2 Query&nbsp;Performance . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;110 <br>5.4 Summary .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;121 5.5 Multi-User&nbsp;environments . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;122 </p><p></p><ul style="display: flex;"><li style="flex:1">6 The&nbsp;BUB-Tree </li><li style="flex:1">123 </li></ul><p></p><p>6.1 Introduction&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;123 6.2 Related&nbsp;Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;124 6.3 BUB-Tree&nbsp;regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;125 6.4 Point&nbsp;Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;128 6.5 Insertion&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;129 6.6 Page&nbsp;Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;130 6.7 Deletion&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;133 6.8 Range&nbsp;Queries .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;133 6.9 Bulk&nbsp;Insertion and Bulk Deletion&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;136 <br>6.9.1 Initial&nbsp;Bulk Loading&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;136 6.9.2 Incremental&nbsp;Bulk Loading&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;136 6.9.3 Bulk&nbsp;Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;137 <br>6.10 Reorganization&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;137 <br>6.10.1 Tightening&nbsp;Bounds .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;138 6.10.2 Optimizing&nbsp;the Index Coverage&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;138 6.10.3 Increasing&nbsp;the Page Utilization&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;139 <br>6.11 Implementation-Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;139 6.12 Comparison&nbsp;of BUB-Tree and R-Tree&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;141 <br>6.12.1 Related&nbsp;Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;142 6.12.2 {R}-Tree coverage&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;143 6.12.3 Bounding&nbsp;Technique .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;143 6.12.4 Supported&nbsp;Data Types&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;144 6.12.5 Dimensionality&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;144 6.12.6 Multi-User&nbsp;Support . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;144 6.12.7 Page&nbsp;Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;144 6.12.8 Index&nbsp;Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;145 6.12.9 Maintenance&nbsp;Performance .&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;145 6.12.10Query Performance&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;147 <br>6.13 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;148 <br>6.13.1 Random&nbsp;insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;149 6.13.2 Bulk&nbsp;Loading .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;155 6.13.3 Query&nbsp;Procession . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;166 6.13.4 Point&nbsp;Queries .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;168 6.13.5 Random&nbsp;Range Queries&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;171 6.13.6 Street&nbsp;Section Queries&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;173 <br>6.14 Summary&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;175 </p><p></p><ul style="display: flex;"><li style="flex:1">7 Management&nbsp;of Spatial Objects </li><li style="flex:1">177 </li></ul><p></p><p>7.1 Related&nbsp;Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;178 <br>7.1.1 RDBMS&nbsp;Implementations .&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;178 7.1.2 Interval&nbsp;Indexing .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;179 7.1.3 Sub-Cube&nbsp;Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;181 7.1.4 Previous&nbsp;UB-Tree based solutions&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;181 <br>7.2 Mapping&nbsp;Methods .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;181 <br>7.2.1 Approximation&nbsp;by a MBB&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;181 7.2.2 Approximation&nbsp;by SFC-segments&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;186 7.2.3 Indexing&nbsp;the Parameter Space&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;188 <br>7.3 Experiments:&nbsp;Interval Data&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;189 <br>7.3.1 Artificial&nbsp;Interval Data Sets&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;189 7.3.2 Artificial&nbsp;Interval Query Sets .&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;190 7.3.3 Interval&nbsp;Index Structures . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;191 7.3.4 Qualitative&nbsp;Comparison of Interval-Index Structures .&nbsp;. . . . . . . .&nbsp;191 7.3.5 Interval&nbsp;Measurement Results&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;192 7.3.6 Clustering&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;195 7.3.7 Real&nbsp;World Data&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;198 7.3.8 GEO&nbsp;Data .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;201 7.3.9 Endpoint&nbsp;Transformation .&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;201 7.3.10 Comparison&nbsp;of Point-Transformation Variants&nbsp;. . . . . . . . . . . .&nbsp;204 7.3.11 Approximation&nbsp;by SFC-segments&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;204 <br>7.4 Summary .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;205 </p><p></p><ul style="display: flex;"><li style="flex:1">8 Summary </li><li style="flex:1">207 </li></ul><p></p><p>8.1 Conclusion&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;208 </p><p></p><ul style="display: flex;"><li style="flex:1">A Description&nbsp;of the Test System </li><li style="flex:1">209 </li></ul><p></p><p>A.1 System&nbsp;Sunbayer69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;209 A.2 System&nbsp;Sunwibas0 .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;209 A.3 System&nbsp;Atmistral7 .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;210 </p><p></p><ul style="display: flex;"><li style="flex:1">B Real&nbsp;World Data Sets </li><li style="flex:1">211 </li></ul><p></p><p>B.1 GfK&nbsp;Datawarehouse .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;211 B.2 GEO&nbsp;Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;220 </p><p>C Measures&nbsp;of RFDBMS Bibliography <br>224 239 </p><p>List of Figures </p><p>2.1 Example&nbsp;for a two dimensional Universe and Queries on it&nbsp;. . . . . . . . .&nbsp;15 2.2 Physical&nbsp;Structure of a Hard-Disk&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;18 2.3 Percentage&nbsp;of Positioning Cost with growing Page Size&nbsp;. . . . . . . . . . .&nbsp;19 2.4 Random&nbsp;and sequential Access Times on different Hardware Configurations&nbsp;20 2.5 Different&nbsp;Types of Clustering for Lexical Order and the Interval Query [c, f] 23 </p><p>2.6 Clustering Page-Based Index vs. Secondary Index&nbsp;. . . . . . . . . . . . . .&nbsp;25 </p><p>2.7 Range&nbsp;Query and actually affected Area of the Universe .&nbsp;. . . . . . . . . .&nbsp;27 3.1 Simple&nbsp;SFCs for 8x8 universe with range query .&nbsp;. . . . . . . . . . . . . . .&nbsp;29 3.2 Example&nbsp;relations of ∆<sub style="top: 0.1494em;">M </sub>to ∆<sub style="top: 0.1494em;">S </sub>. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;31 3.3 Universe,&nbsp;quad tree partitioning, and address .&nbsp;. . . . . . . . . . . . . . . .&nbsp;34 3.4 Z-curve&nbsp;for 8x8 universe&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;35 3.5 bit-interleaving&nbsp;for dimensions with differing domains&nbsp;. . . . . . . . . . . .&nbsp;37 3.6 Hilbert-curve&nbsp;for 8x8 universe&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;37 3.7 Hilbert-curve&nbsp;indexing an universe with differing dimension cardinalities .&nbsp;. 38 3.8 Gray-Code-curve&nbsp;for 8x8 universe&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;40 3.9 Brother-father-search&nbsp;with Z-curve&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;43 3.10 Cost&nbsp;of post filtering vs. NJI/NJO calculation&nbsp;. . . . . . . . . . . . . . . .&nbsp;48 3.11 Space&nbsp;partitioning for Z- and Hilbert-curve . . . . . . . . . . . . . . . . . .&nbsp;50 3.12 B-Tree&nbsp;traversal: Page accesses&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;51 3.13 Percentage&nbsp;of segments in SFCs&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;56 3.14 SFC-Regions&nbsp;consisting of disjoint areas in Ω .&nbsp;. . . . . . . . . . . . . . . .&nbsp;60 </p><p>4.1 A&nbsp;UB-Tree Partitioning the World into Z-regions&nbsp;. . . . . . . . . . . . . .&nbsp;64 4.2 Z-regions&nbsp;of a UB-Tree for a given Data Distribution&nbsp;. . . . . . . . . . . .&nbsp;66 4.3 A&nbsp;Bulk Loading Architecture for one dimensional clustering Indexes&nbsp;. . . .&nbsp;73 4.4 Estimated&nbsp;Number of Page Reads and Writes&nbsp;. . . . . . . . . . . . . . . .&nbsp;79 4.5 Changes&nbsp;of UB-Tree Space Partitioning during Incremental Loading&nbsp;. . . .&nbsp;80 4.6 The&nbsp;Bulk Loading Architecture as implemented for UB-Trees .&nbsp;. . . . . . .&nbsp;81 4.7 Data&nbsp;Distribution and Times for Copying resp. Pipe-Lining .&nbsp;. . . . . . . .&nbsp;83 4.8 Address&nbsp;Calculation, Sorting and Loading Performance for GfK DWH .&nbsp;. .&nbsp;83 4.9 Page&nbsp;Statistics for Bulk Loading of GfK DWH&nbsp;. . . . . . . . . . . . . . . .&nbsp;86 4.10 Deleting&nbsp;and Freeing Subtrees&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;91 </p><p>vii viii </p><p>LIST OF FIGURES </p><p>5.1 Query&nbsp;Processing with Bitmap Indexes&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;98 5.2 RLE&nbsp;Bitmap Compression&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;100 5.3 Cost&nbsp;for Address Calculation and Sorting .&nbsp;. . . . . . . . . . . . . . . . . .&nbsp;105 5.4 Maintenance&nbsp;Cost for Bitmap Indexesc&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;107 5.5 Bitmaps&nbsp;mapped to Images&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;108 5.6 Overall&nbsp;Maintenance Cost&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;110 5.7 PG SERIES: Result Size . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;111 5.8 PG SERIES: Elapsed Time&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;114 5.9 PG SERIES: Page Accesses w.r. to Query&nbsp;. . . . . . . . . . . . . . . . . .&nbsp;116 5.10 Time&nbsp;per Logical Page Accesses&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;117 5.11 PG SERIES: Page Accesses w.r. to Result Set Size&nbsp;. . . . . . . . . . . . .&nbsp;118 5.12 PG SERIES Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;119 5.13 2Y PG SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;120 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    257 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us