Of2010-1152 20100720I Kanam

Of2010-1152 20100720I Kanam

Comparison of the 1960 (Mw=9.5) and the 2010 Chilean (Mw=8.8) Earthquakes. For the 2010 Chile earthquake, within one hour……….. Ruegg et al., (PEPI, 2009) with GPS study “We would then conclude that the southern part of the Concepción–Constitución gap has accumulated a slip deficit that is large enough to produce a very large earthquake of about Mw= 8.0–8.5. ― Teleseismic body-wave inversion Lay et al.(GRL, 2010) Moment-rate function, Lay et al. 92010) Teleseismic body-wave inversion, Caltech Tectonic Observatory (Anthony Sladen) Slip distribution from seismic, INSAR, and GPS, courtesy of Caltech Tectonic Observatory Comparison of strain records of the 1960 (ISA) and the 2010 (PFO) Chilean earthquakes R/G sensitivity=6.3 1960 Chile 2010 Chile R2 R3 NW R4 R5 R6 nano strain Time, s bp n 4 c 0.0005 0.01 p 1 Strain seismogram of the 2010 Chilean (Maule) earthquake recorded at PFO (NW component) Observed R2 R3 NW R4 R5 R6 nano strain Time, s synthetic bp n 4 c 0.0005 0.01 p 1 2010 Chile PFO strain (observed) G1 G2 G3 G4 EW nano-strain NS R1 R2 R3 R4 NW Time, s bp_n4_c_0.0002-0.005_p1 2010 Chile PFO strain (synthetic GCMT) G1 G2 G3 G4 EW nano-strain NS R1 R2 R3 R4 NW Time, s bp_n4_c_0.0002-0.005_p1 Normal mode spectrum (from 300s to 1 hour) 2010 Maule, TUC Vertical from O.T. 20000s taper Han 0.2-0.2 computed observed Frequency, mHz Normal mode spectrum (from 300s to 1 hour) 2010 Maule, MAJO Vertical from O.T. 20000s taper Han 0.2-0.2 computed observed Frequency, mHz 1960 Chile Data 6 X5 ΔM=0.7 (empirical) 100 Tsunami amplitude in the Pacific Abe (1979, 2010) 10 Hilo Japan_average 1960Chile, m Aleutian_average 1 Honolulu California_average 0.1 0.1 1 2010 Chile, m 1960 Data 1 Tide gauge tsunami amplitude (from NGDC data base) (far-field only, i.e., exclude South America, Central America, and Mexico) 10 x10 x5 x3 x2 1960 1 x1 1960 Valdivia tsunami, m tsunami, Valdivia 1960 0.1 0.1 1 2010 Maule tsunami, m 2010 Moment-rate Spectrum 1960 Chile Mw=9.5 (with ω2 reference spectra) Estimated from ISA strain Smith (1966), Mw=9.5 also tsunami Abe (1979, 2010) 2004 Sumatra Mw=9.2 9.0 Estimated from PFO strain for the 2010 event 2010 Chile Mw=8.8 8.5 Moment, N-m Moment, 8.0 Hartzell and Heaton, 1985 7.5 Also: mB_hat= 7.6 for both 1960 Chile and 1964 Alaska Houston and Kanamori (1986) mB_hat=7.2 for the 2004 Sumatra Kanamori( (2006) Frequency, Hz Progress in the last 50 years 1. Long-term behavior of subduction-zone seismicity 2. Better understanding of physics 3. Rapid response 4. Strong motion and engineering 5. Discovery of my ignorance For the 2004-Sumatra Earthquake R. Kerr (Science, 2005) Failure to Gauge the Quake Crippled the Warning Effort Seismologists knew within minutes that the earthquake off Sumatra must have just unleashed a tsunami, but they had no idea how huge the quake— and therefore the tsunami—really was For the 2010 Chile earthquake, within one hour……….. 2009 Samoa Is. Earthquake (Mw=8.1) Comparison of the 1917 and 2009 Samoa earthquakes Omori seismograms at Mizusawa 1917 Samoa Earthquake Mizusawa Omori NS, T0=38s, V=20 P S L R 10 cm 2009 Samoa, KSN Simulated Omori NS, T0=38s, V=20, h=0.2 10 cm 1917 Samoa Earthquake Mizusawa Omori EW, T0=17s, V=100 P S L R 15 cm 2009 Samoa, KSN Simulated Omori EW, T0=17s, V=100, h=0.2 30 cm C o_amp_phase E Mizusawa 2.5 2 Rayleigh wave 1.5 Amplitude 1 Love wave 0.5 0 0 60 120 180 240 300 360 Azimuth, deg. E o_MS_global 2009 Samoa earthquake, Surface-wave magnitude, MS Mizusawa 8.5 8 S M 7.5 7 0 60 120 180 240 300 360 Azimuth, deg. 2009 Samoa W phase solution Discrepancy between gCMT and W-phase mechanisms CMT P and SH waveform fits from finite-source model Radiated energy 16 ER= 4 x 10 J Scaled energy -5 ER/Mo = 2.2 x10 ES/M0 Scaled Energy, ER/M0 M0_ES_table 0.0001 2009_Kuril 1994_Shikotan 2006_Tonga 2009 Andaman Is. 2001_India 2007_kuril 0 2009 Samoa /M R -5 2002_Sumatra E 10 ES/M0 2003_Tokachi-oki 2008_Sumatra 2005_Nias 2007_Sumatra 2006_Kuril 2004_Sumatra-Andaman 2006_Java 2004 Sumatra-Andaman 10-6 1019 1020 1021 1022 1023 M0. N-m M0 Near-field waveforms Far-field waveforms Chen Ji’s 3-event model A B C Mw=7.75 Mw=7.99 Mw=7.89 -15.05 -172.65 8.0 36. 20. -15.6 -172.0 8.0 51.25 16. -15.55 -172.65 16. 110. 18. 1 2 1 2 Vague evidence for a secondary event Evidence for a secondary event at close-in R1 (PPT and RAR) 200s Composite Source What does a point source solution (e.g., gCMT and WP) mean? Mc()() t M i t t di ˆˆitdi Mci()() M e ˆˆi td i t di Mci0 ()() e M e (e.g., in the LSQ sense.) new Direct sum 800s (Mw=7.81) 500s 400s 300s 200s ―Preferred‖ solution -------Mo-----strike--dip---rake----lat.-----long.---depth---centroidtime----halfduration X. 1.8e28 144 65 -86 -15.51 -172.03 18. 33 ~30 (10 s low, 20 s rise, 40 s fall) Y2. 5.4e27 185 29 90 -16.01 -172.43 18. 69 20 Z2. 5.1e27 185 29 90 -16.01 -172.43 18. 110 20 Event X origin time is USGS hypocentral time 17:48:10.85. 3-event “preferred” model X Y Z Mw=8.10 Mw=7.75 Mw=7.73 -15.51 -172.03 18. 33 ~30 -16.01 -172.43 18. 69 20 -16.01 -172.43 18. 110 20 Direct Sum T=800s T=500s T=200s W phase Solution 0.00167-0.005 Hz ZNE W phase solution 0.001-0.0014 Hz Chen Ji 3-event (2 normal + 1 thrust) model 0.001 to 0.0014 Hz Chen Ji 3-event (2 normal + 1 thrust) model 0.001 to 0.0014 Hz “Current” model 1 normal + 2 thrusts 0.001 to 0.0014 Hz “Current” model 1 normal + 2 thrusts 0.001 to 0.0014 Hz Umino et al. Index of Frequency Contents Trench Axis High Freq Low Freq Seismograms 1 min Event 1 hp >1.0 10/10/2009 M=5.9 -15.64 -173.23 0.3 to 1.0 10 km 0.1 to 0.3 lp < 0.1 Event 2 10/19/2009 M=6.2 -15.30 -172.19 10 km Comparison of teleseismic P waveform Event 1 Event 2 Comparison of moment-rate spectrum from teleseismic data (solid curve: ω2 spectrum) C C D D o_spec_sum_20091010 Event 1 20091010 Event 2 20091019o_spec_sum_20091019 6 106 10 5 105 10 N-m N-m 13 13 4 4 10 moment, 10 Moment, 10 Moment, 10 1000 1000 0.01 0.1 1 0.01 0.1 1 Frequency, Hz Frequency, Hz.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    57 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us