The Intelligent Placement of Vegetation Objects in 3D Worlds Li Jiang SUBMITTED IN TOTAL FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF GEOMATIC ENGINEERING (BY RESEARCH). April 2009 Supervisors: Prof. Ian Bishop Dr Jean-Philippe Aurambout Department of Geomatics The University of Melbourne, Australia Abstract In complex environments, increasing demand for exploring natural resources by both decision makers and the public is driving the search for sustainable planning initiatives. Among these is the use of virtual environments to support effective communication and informed decision-making. Central to the use of virtual environments is their development at low cost and with high realism. This paper explores intelligent approaches to objects placement, orientation and scaling in virtual environments such that the process is both accurate and cost- effective. The work involves: (1) determining of the key rules to be applied for the classification of vegetation objects and the ways to build an object library according to ecological classes; (2) exploring rules for the placement of vegetation objects based on vegetation behaviours and the growth potential value collected for the research area; (3) developing GIS algorithms for implementation of these rules; and (4) integrating of the GIS algorithms into the existing SIEVE Direct software in such a way that the rules find expression in the virtual environment. This project is an extension of an integrated research project SIEVE (Spatial Information Exploration and Visualization Environment) that looks at converting 2D GIS data into 3D models which are used for visualization. The aims of my contribution to this research are to develop rules for the classification and intelligent placement of objects, to build a normative object database for rural objects and to output these as 2D billboards or 3D models using the developed intelligent placement algorithms. Based on Visual Basic Language and ArcObjects tools (ESRI ArcGIS and Game Engine), the outcomes of the intelligent placement process for vegetation objects are shown in the SIEVE environment with 2D images and 3D models. These GIS algorithms were tested in the integrated research project. According to the case study in Victoria, rule-based intelligent placement is based on the idea that certain decision- making processes can be codified into rules which, if followed automatically, would yield results similar to those which would occur in the natural environment. Final product produces Virtual Reality (VR) scenes similar to the natural landscapes. I Considering the 2D images and 3D models represented in the SIEVE scenario and the rules (for natural and plantation vegetation) developed in conjunction with scientists in the Victorian Department of Primary Industries (DPI) and other agencies, outcomes will contribute to the development of policies for better land and resource management and link to wide ranging vegetation assessment projects. Keywords: landscape simulation, virtual environment, geographic information systems, intelligent placement, rule-based placement, vegetation classification II Declaration This is to certify that (i) The thesis comprises only my original work towards the Masters except where indicated in the Preface, (ii) Due acknowledgement has been made in the text to all other material used, (iii) The thesis is around 23,000 words in length, inclusive of footnotes, but exclusive of tables, maps, appendices and bibliography. Acknowledgments I would like to express my gratitude to my supervisor, Professor Ian D. Bishop, whose expertise, understanding, and patience, added considerably to my graduate experience. I appreciate his vast knowledge and guidance to research skills and his advices in writing the thesis. Thanks to CRC and DPI for their research assistance. Finally, I wish to express special appreciation to my families for all the love and support they offered me through my entire life. III Contents Abstract ............................................................................................................................................ I Acknowledgments ......................................................................................................................... III List of Tables .................................................................................................................................... I List of Figures .................................................................................................................................. I Acronyms ...................................................................................................................................... III Definitions ..................................................................................................................................... III 1. Introduction ......................................................................................................... 1 1.1 Overview ........................................................................................................ 1 1.2 Problem Statement .......................................................................................... 2 1.3 Outline of the Thesis ...................................................................................... 3 2. Related Research ................................................................................................. 5 2.1 The Development of Landscape Visualization ............................................... 5 2.2 Intelligent Placement of Objects in Virtual Worlds ....................................... 9 2.2.1 Urban objects placement ....................................................................... 10 2.2.2 Rural objects placement ........................................................................ 11 2.3 The SIEVE context ....................................................................................... 12 2.3.1 Overview ............................................................................................... 12 2.3.2 The Torque Game Engines .................................................................... 15 2.3.3 Linkage to GIS ...................................................................................... 16 2.4 Objectives of this Project .............................................................................. 18 2.5 Summary ....................................................................................................... 19 3. Intelligent placement of objects ....................................................................... 20 3.1 Introduction .................................................................................................. 20 3.2 Vegetation Modelling ................................................................................... 20 3.3 Vegetation Classification and Representation .............................................. 24 3.4 Object library ................................................................................................ 29 3.5 Vegetation Placement ................................................................................... 34 3.5.1 Intelligent Placement Constraints.......................................................... 34 3.5.2 Vegetation Model Exhibition ................................................................ 38 3.5.3 Vegetation Shape................................................................................... 40 3.5.4 Vegetation Location .............................................................................. 42 3.6 Summary ....................................................................................................... 46 4. Plant Growth Simulation via SIEVE ............................................................... 47 4.1 Introduction .................................................................................................. 47 4.2 Integrating Algorithms into SIEVE .............................................................. 47 4.2.1 SmartVeg Architecture .......................................................................... 47 4.2.2 Points Generation .................................................................................. 50 4.2.3 EVC-based Placement ........................................................................... 53 4.2.4 Plantation-based Placements ................................................................. 62 4.3 Case Study .................................................................................................... 65 4.3.1 Growth Potential Value and Vegetation Height .................................... 66 4.3.2 EVC-based Simulation .......................................................................... 68 4.3.3 Plantation-based Simulation .................................................................. 73 4.4 Summary ....................................................................................................... 74 5. Conclusions and Further Outlook ................................................................... 76 5.1 Conclusions .................................................................................................. 76 5.2 Evaluation of the SmartVeg ......................................................................... 77 5.3 Applications .................................................................................................. 77 5.4 Limitations and Future Research .................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages92 Page
-
File Size-