THE UNIVERSITY OF ADELAIDE AUSTRALIA School of Mechanical Engineering Commercial Launch Vehicle Design and Predictive Guidance Development Matthew R. Tetlow A thesis subrnitted in fulfilment of the requirements for the degree of Ph.D in Engineering on the 20th day ofJønuøry 2003 Contents Abstract xvi Statement of originality xvlu Acknowledgements xtx Nomenclature xx Acronyms xxllt L Introduction 1 1.1 Background 1 I.2 Objective 7 1.3 Practical application . 8 2 Literature Review 9 2.1 Launch vehicles to date 9 2.2 Propulsion systems 10 2.2.7 Chemical rocket propulsion 2.2.2 Air-breathingpropulsion 2.3 Vehicle design aspects 2.3.1 Vehicle configuration . 2.3.2 Number of stages/boosters 2.3.3 Vehicle layout 2.3.4 Recovery system 2.4 Orbital mechanics . 2.4.7 Mission requirements . 2.5 Launch sites 2.6 Ascent guidance 2.6.1 Open loop guidance 2.6.2 Closed loop guidance . 2.7 Flyback guidance systems 2.8 Conclusions from the literature review 3 Numerical Techniques 3.1 Simulationtechniques 3.7.1 Dynamicsmodelling 3.7.2 Propulsion modelling . 11 3.1.3 Mass modelling . 3.1.4 Atmospheremodelling 3.1.4.1 Standard atmosphere models 3.1.4.2 MSISE atmosphere models 3.1.5 Wind modelling GIWM93) 3.1.6 Earth form modelling 3.1.6.1 Spherical Earth 3.1.6.2 Higher order models 3.7.7 Gravitation field modelling . 3.I.1.1 Newtonian 3.7.1.2 Higher order models . 3.2 Optimisationtechniques 3.2.1 Gradient projection method 3.2.2 Sequential quadratic programming (NLPQL) . 3.3 Steering model parameterisation 4 Software Description 4.1 Sensitivity analysis software 4.2 Vehicle design software 4.2.7 Simulation and optimisation 111 4.2.2 Propulsion model 4.2.3 Mass model . 4.2.4 Steering model parameterisation 4.3 Ascent guidance software 4.3.1 Virtual system 4.3.I.1 Virtualvehicle 4.3.7.2 Virtual environment 4.3.2 Guidance computer . 4.3.2.1 Guidance environment models 4.3.3 Steering modelparameterisation 4.3.4 Attitude controller 4.4 Flyback guidance software 4.4.1 Virtual system 4.4.7.1 Virtualvehicle 4.4.1.2 Virtual environment 4.4.2 Guidance computer 4.4.2.1 Vehicle models . 4.4.2.2 Environment models . 4.4.3 Steering modelparameterisation lV 5 Sensitivity Analysis 100 5.1 Problemdescription 100 5.2 Nominal models 101 5.3 Results 101 5.3.1 Integration Verification 101 5.3.2 Modelling error sensitivity . 704 5.4 Sensitivity conclusion . l12 6 Launch Vehicle Design Investigation 113 6.1 Design choices 7r4 6.2 Mission analysis . 115 6.3 Reference mission tt7 6.4 Design concept 777 6.4.1 Propulsion 179 6.4.2 Aerodynamics t2l 6.4.3 Component masses 121 6.5 Staging condition results 722 6.6 Powered booster flyback results 123 6.6.1 Design choice for powered flyback concept 126 6.7 Unpowered booster flyback results 130 v 6.7.7 Design choice for unpowered flyback concept 132 6.8 Comparison 136 6.9 Summary and discussion 138 7 Predictive Guidance for Ascent 139 7.1 Introduction 139 7.2 Problemdescription 140 7.3 Vehicledescription l4l 7.4 Mission profile t42 7.5 Developmentobservations 142 7.6 Ascent guidance results 144 7.6.1 Gravitation model perturbation . 146 1.6.2 Atmosphere modelperturbation 148 1.6.3 V/ind model . 151 7.6.4 Steering parameter models r55 7.6.5 Guidance call intervals ls6 7.6.6 State errors (sensor errors) 158 1.6.7 Non-nominal atmosphereperturbations 160 1.6.8 Staging errors (staging point errors) 162 7.6.9 Thrust loss 163 7.6.70 Monte Carlo analysis 165 7.1 Summary and discussion 167 v1 I Predictive Guidance for Flyback 169 8.1 Introduction t69 8.2 Problem description . n0 8.3 Vehicle description 777 8.4 Mission profile llt 8.5 Developmentobservations 773 8.6 Flyback guidance results 776 8.6.1 Gravitation and atmosphere model 178 8.6.2 Wind model 182 8.6.3 State errors (sensor errors) 188 8.6.4 Guidance call intervals 189 8.6.5 Random wind variations 190 8.6.6 Initial condition effors (staging point errors) . 193 8.6.7 Monte Carlo analysis . t96 8.7 Summary and discussion 200 9 Conclusions 203 9.7 Vehicle design 203 9.2 Guidance 204 9.2.1 Ascent guidance 20s v11 9.2.2 Flyback guidance 206 9.3 Recommendations 201 9.4 Closing Remarks 207 Appendices 208 A Woomera weather 208 B US Standard atmosphere model 2t0 C MSISE93 atmosphere model 212 D HWM wind model 214 E Aerodynamic coefficient reference table 216 F Flyback-Monte Carlo (NE nom. wind) 218 References 220 v111 List of Figures 1.1 Kistler Kl (Kistler,2002) J 7.2 Expected yearly GEO payload market (2001-2010) (Middleton,1999) 4 1.3 Future launch market (Griner and Lyles, 1998) 6 2.1 Typical performance of a rocket engine (Huzel and Huang, 7992) 72 2.2 Linear Aerospike (NASA, 2002) 13 2.3 SSME on test stand (NAS A,2002) l4 2.4 Aerojet AJ26-60 (Kistler, 2OO2) t6 2.5 NASA X-vehicles 23 2.6 Orbit parameters 26 2.7 Angle description 28 3.1 Wing mass analysis data 51 3.2 Axes for gravitation derivation 58 3.3 Parameterisation using grid points 69 1X 3.4 Parameterisation using function coefficients lo 4.1 ATOPS parameterisation model 73 4.2 Virtual orbiter (Tetlow et a1., 2002) 7l 4.3 Program flow for ascent guidance (Tetlow et a1., 2002) 78 4.4 Virtual orbiter mass distribution 81 4.5 Typical grid type steering model for ascent 88 4.6 Program flow for flyback guidance 90 4.7 Flyback program structure 96 4.8 Typical steering model 99 5.1 Altitude vs Time for integration step comparison 702 5.2 Dynamic Pressure vs Time for integration step comparison 103 5.3 Sensitivity to specific impulse of first stage engine at sea level lo4 5.4 Sensitivity to specific impulse of first stage engine in vacuum 105 5.5 Sensitivity to specif,c impulse of second stage engine in vacuum 105 s.6 Sensitivity to mass flow rate of the first stage engine 106 5.7 Sensitivity to mass flow rate of the second stage engine 107 5.8 Sensitivity to gross lift off weight . 707 5.9 Sensitivity to initiation time of first roll manoeuvre 108 5.10 Sensitivity to final time of first ro11 manoeuvre . 108 x 5.11 Sensitivity to aerodynamic lift and drag coefficients 109 5.12 Sensitivity to constant atmospheric variation at all altitudes 110 5.13 Sensitivity to an atmospheric density increase between 40km and 60km 111 5.14 Sensitivity to an atmospheric density increase between 75km and 40km 111 6.1 Mission profile 118 6.2 Concept vehicle (Tetlow et al., 2007) 118 6.3 Staging condition comparison 723 6.4 Altitude profile 126 6.5 Velocity profile 127 6.6 Ground track 128 6.7 Booster flyback mission (post-staging) 129 6.8 Flyback control parameters 130 6.9 Altitude profile 132 6.10 Velocity profile 133 6.1I Ground track 134 6.12 Booster flyback mission (from staging) 135 6.13 Flyback control parameters 135 1.7 Ascent mission prof,le 142 7 .2 Sequence of virtual environmental variations 745 xl 7.3 Flight profile for the gravity perturbed case 147 1.4 Steering model for the gravity perturbed case t49 1.5 Flight profile for the atmosphere perturbed case. t49 7.6 Steering model for the atmosphere perturbed case 1s0 7.7 Flight profile for the tailwind case 152 7.8 Steering model for the tailwind case 152 7.9 Flight profile for the headwind case 153 7.10 Steering model for the headwind case 154 7.11 Altitude profile with sensor errors 159 7.12 Flight profile with sensor errors 159 7.13 Flight profile for the random atmospheric density and wind case l6t 7.14 Partial steering profile for the random atmospheric density and wind case 162 7.15 Monte Carlo result for final altitude t66 7.16 Monte Carlo result for flight path angle 166 8.1 Flyback mission profile 172 8.2 Sequence of virtual environmental variations 177 8.3 Flight profile for disturbed atmosphere and gravitation case 719 8.4 Steering model for disturbed atmosphere and gravitation case 181 8.5 Flight profile with South Westerly wind 183 xtl 8.6 Steering model with South'Westerly wind 18s 8.7 Flight profile with North Easterly wind 186 8.8 Steering model with North Easterly wind 188 8.9 Flight profile with random wind variation 19r 8.10 Steering model with random wind variation 192 8.11 Guided flight profile with initial condition effors 195 8.12 Steering model with initial condition effors 196 8.13 Monte Carlo result for flnal heading 198 8.14 Monte Carlo result for flight path angle 198 8.15 Monte Carlo result for velocity . 199 4.1 Wind data for'Woomera (BOM-Adelaide, 2002) 209 8.1 US Standard atmospheric density profile 2tt C.l MSISE93 atmospheric density profile 2t3 D.1 HWM Southerly winds 214 D.2 HIVM'Westerly winds 215 E.1 Aerodynamic coefficient reference table 217 F.1 Monte Carlo result for heading 218 F.2 Monte Carlo result for flight path angle 279 F.3 Monte Carlo result for velocity 219 xI11 List of Tables 1.1 Current launch vehicle costs (Isakowitz,1995) 2 2.1 Current launch vehicles (Isakowitz, 1995) 10 2.2 Orbital velocities 27 6.1 Powered booster vehicle comparison .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages254 Page
-
File Size-