Concert Hall Preference Prediction—Uncertainties from Using A

Concert Hall Preference Prediction—Uncertainties from Using A

Magne Skålevik Brekke & Strand, Oslo www.akutek.info Predicting Concert Hall Preference from Physical Quantities (Parameters) UNCERTAINTIES RELATED TO SELECTION OF DATA ISRA 2013, Toronto, June 9th 2013 Concert Hall Preference . Preference? The degree to which a concert hall is preferred, statistically . Why predict? Chance of Success Scientifical or academical reasons Risk of Failure Curiosity Basis for decisions (Building Committee) RISKY BUSINESS . Null Hypothesis: Preference and Physical Quantities just covaries randomly . We should first try to predict existing halls Subjective data Objective data Beranek ranking of 58 halls: Tocc Beranek Tunocc 1 Vienna Musikverein EDT Calculated from T , V and R 2 Boston Symphony Hall occ G with Barron Revised Theory 3 Buenos Airos, Teatro Colon C R = 11m + 0.67*L 4 Berlin Konzerthaus 5 Amsterdam Concertgebouw Glate 6 Tokyo Opera City, Concert Hall G125 L Beranek geometrical data .......... Halls of rank 7 to 52 .......... W 53 Sydney Opera House, Concert Hall H/W 54 San Fransisco, Davies Hall V/S0T 55 Tel Aviv, Frederic Mann ITDG Beranek data 56 London, Barbican LF Long story, a lot to be said 57 Buffalo Kleinhans 1-IACCe Long story, a lot to be said 58 London, Royal Albert Uncertainty from size of parameter subset Let’s start, like Sabine, with good old T 1p Tocc Max 2.14 Min 1.89 r2=0.26 r=0.51 Let’s start, like Sabine, with good old T Not bad (r=0.51), but there are good halls with bad T and vice-versa. Lets ask Clarity for advice... 1p Tocc Max 2.14 Min 1.89 r2=0.26 r=0.51 Uncertainty from size of parameter subset Oops, Clarity made it worse, let’s ask G Strength instead... T 1p occ 2p Tocc C Max 2.14 Max 2.14 1.0 Min 1.89 Min 1.89 -0.7 r2=0.26 r=0.51 r2=0.18 r=0.42 Uncertainty from size of parameter subset Thanks, G Strength, but still some good halls gets 0% score T 1p occ 2p Tocc G Max 2.14 Max 2.14 5.0 Min 1.89 Min 1.89 3.2 r2=0.26 r=0.51 r2=0.36 r=0.60 Uncertainty surprises! C helped after all.. T T G C 1p occ 2p Tocc G 3p occ Max 2.14 Max 2.14 5.0 Max 2.14 5.0 1.0 Min 1.89 Min 1.89 3.2 Min 1.89 3.2 -0.7 r2=0.26 r=0.51 r2=0.36 r=0.60 r2=0.41 r=0.64 Uncertainty from size of parameter subset Uncertainty from size of parameter set 1,00 1-exp(-x/10) Best fit trend 0,90 correlation r2 0,80 0,70 0,60 0,50 r^2 0,40 0,30 0,20 0,10 0,00 0 2 4 6 8 10 12 14 16 18 Number of parameters Uncertainty from size of parameter subset -G L LF 1- T T EDT G C H/W W GL V/S T occ unocc 125 0 ITDG IACCe G rsq single- 0.00 0.01 0.30 0.06 0.26 0.10 0.14 0.13 0.00 0.06 0.26 0.22 0.23 0.01 parameter rsq-difference when removed -0.03 -0.05 -0.04 -0.05 -0.04 -0.01 -0.01 -0.04 -0.07 -0.04 -0.05 -0.05 -0.03 -0.02 from set of 14 Uncertainty from size of parameter subset -G L LF 1- T T EDT G C H/W W GL V/S T occ unocc 125 0 ITDG IACCe G rsq single- 0.00 0.01 0.30 0.06 0.26 0.10 0.14 0.13 0.00 0.06 0.26 0.22 0.23 0.01 parameter rsq-difference when removed -0.03 -0.05 -0.04 -0.05 -0.04 -0.01 -0.01 -0.04 -0.07 -0.04 -0.05 -0.05 -0.03 -0.02 from set of 14 Apologies, Clarity for jumping to conclusions. You really make a difference Uncertainty from size of concert hall subset 100% 90% 80% 70% 60% 50% 40% Correlation r^2 30% 10 halls 20% 10% 0% 0 10 20 30 40 50 Number of halls Example: 10 halls, 6 paramameters, r2=0.94 Vienna Amsterdam Cardiff Munich Gothenburg Salzburg Stuttgart Edinburg London, Festival London, Barbican Class: I II III EDT G C LF Glate G125 Upper limit 2.2 5.3 0.7 0.25 2.5 5.7 Lower limit 1.8 3.3 -1.3 0.15 0.5 3.7 53 halls, 12 parameters, r=0.86, r2=0.75 L ITDG Tocc Tunocc EDT G C G125-G H/W W GL V/S0T 53 halls, 12 parameters, r=0.86, r2=0.75 100% 90% R² = 0,75 80% 70% 60% 50% 40% 30% Objective score 20% 10% 0% 0 10 20 Rank 30 40 50 60 L ITDG Tocc Tunocc EDT G C G125-G H/W W GL V/S0T Assuming Rank >20 is not acceptable 100% 90% 80% 70% Acceptance limit 60% 50% 40% 30% Objective score 20% 10% 0% 0 10 20 Rank 30 40 50 60 L ITDG Tocc Tunocc EDT G C G125-G H/W W GL V/S0T Uncertainty effect: 15% of Top20 rejected 100% 90% 80% 70% 60% 50% 40% 30% Objective score Salt Lake City, Symphony Hall 20% Tokyo, Bunka Kaikan 10% Costa Mesa, Segerstrøm Hall 0% 0 10 20 Rank 30 40 50 60 L ITDG Tocc Tunocc EDT G C G125-G H/W W GL V/S0T Uncertainty effect is one-sided, good news 100% 90% Phew! - this region is empty 80% – no halls are being 70% overestimated 60% 50% 40% 30% Objective score Salt Lake City, Symphony Hall 20% Tokyo, Bunka Kaikan 10% Costa Mesa, Segerstrøm Hall 0% 0 10 20 Rank 30 40 50 60 L ITDG Tocc Tunocc EDT G C G125-G H/W W GL V/S0T Testing predictions on unranked halls Score≥50% Replication supported Score<50% Replication NOT supported Valencia, Paleu de la Musica Seattle, Benaroya Hall *Lucerne, Cultural Ctr. Concert Hall Sao Paolo, Sala Sao Paulo *Manchester Bridgewater Hall Minneapolis, Minn. Orchestra Hall *Fort Worth, Bass Performance Hall Kuala Lumpur, DewanFil. Petronas Taipei Cultural Centre, Concert Hall Budapest, Patricia Hall Mexico City, Salla Nezahualcoyotl Denver Boettcher Hall Philadelphia, Verizon Hall *Olavshallen, Trondheim Baden-Baden Festspielhaus Sapporo Concert Hall Lahti, Sibelius/Talo Athens, Megaron Concert Hall Birmingham Symphony Hall Belfast, Waterfront Hall *Munich, Herkulessalle Rochester, NY, Eastman Theatre Odense, Koncerthus Nielsen Hall Caracas, Aula Magna Agree or disagree? Take the www.akutek.info Survey *Verified by survey Best fit criteria, 12 parameters, r2=0.75, r=0.86 Par L ITDG Tocc Tunocc EDT G C G125-G H/W W GL V/S0T max 38 31 2.14 3.00 (2.29) (5.0) 1.0 3.1 (1.3) 32 (2.5) 65 min 28 13 1.89 2.20 1.79 3.2 -0.7 1.0 0.77 (20) 0.3 57 weight 0.6 0.9 1.6 0.4 0.9 1.2 1.1 1.0 1.2 1.0 1.0 0.7 Uncertainty from limited value-range in data selection Par L ITDG Tocc Tunocc EDT G C G125-G H/W W GL V/S0T max 38 31 2.14 3.00 (2.29) (5.0) 1.0 3.1 (1.3) 32 (2.5) 65 min 28 13 1.89 2.20 1.79 3.2 -0.7 1.0 0.77 (20) 0.3 57 weight 0.6 0.9 1.6 0.4 0.9 1.2 1.1 1.0 1.2 1.0 1.0 0.7 Selection-related Uncertainty: Values in (paranthesis) are equal to limits in the data selection Uncertainty from limited value-range in data selection Bars indicate the acceptable value ranges; 0-100% is the total range of data values 100% 80% 60% 40% 20% 0% Online survey . Status: 343 votes from 36 respondents, total 77 halls; . 13 Halls with 7 votes or more: Correlation between Survey results and Beranek Ranking is promising 5,0 R² = 0,79 We need more data! 4,0 Survey is still open on Online www.akutek.info survey 3,0 scale 1 to 5 Link to survey 2,0 https://www.surveymon key.com/s/MMFMZ5W 1,0 0 10 20Rank 30 40 50 60 Black Box explanation Predicting response from a Black Box Insight is desired However, prediction cannot wait for insight I invariably prefer A over B Black Box explanation Is the brain alone the Black-Box? Or one box in a network of black boxes? I invariably prefer A over B Black Box Evolution For discussion: Preference evolved together with Music, Orchestras, Architecture, Technology, Population, Musical Instruments. The fittest survives. Who’s the species? Who’s the environment? Suggestion: They all are all I invariably prefer A over B Conclusions . Uncertainties in Preference-Predictors should be tested on existing halls . Increased number of halls reduces uncertainty in r2 . Parameter size and combinations influence on the maximum achevivable r2 . Data should include values of «too much» and «too little» Relationship between Parameter and Preference is Non-Linear . Uncertainty in building-desicions can be reduced by «safety-first» policy However, some could-have-been-good halls may not be built The cost of certainty may be loss of freedom in design .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us