Robust Coding Strategies and Physical Layer Service Integration for Bidirectional Relaying

Robust Coding Strategies and Physical Layer Service Integration for Bidirectional Relaying

TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Theoretische Informationstechnik Robust Coding Strategies and Physical Layer Service Integration for Bidirectional Relaying Rafael Felix Wyrembelski Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. sc. techn. Gerhard Kramer Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Dr. rer. nat. Holger Boche 2. Prof. Dr. Vincent Poor (Princeton University, USA) Die Dissertation wurde am 06.10.2011 bei der Technischen Universität München eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 22.03.2012 angenom- men. Zusammenfassung Aktuelle Forschungsergebnisse zeigen, dass Relaiskonzepte die Leistungsfähigkeit und Ab- deckung drahtloser Kommunikationssysteme deutlich erhöhen können. In dieser Disserta- tion betrachten wir bidirektionale Relais-Kommunikation in einem Netzwerk mit drei Statio- nen, in dem zwei Stationen mit Hilfe einer Relaisstation kommunizieren. Im ersten Teil der Dissertation analysieren wir die Auswirkungen ungenauer Kanalkennt- nis an Sender und Empfängern und betrachten den dazugehörigen diskreten gedächtnis- losen bidirektionalen Compound Broadcastkanal. Wir leiten die Kapazitätsregion her und analysieren die Szenarien, in denen zusätzlich entweder der Sender oder die Empfänger per- fekte Kanalkenntnis besitzen. Hierbei zeigt sich, dass Kanalkenntnis an den Empfängern keinen Einfluss auf die Kapazitätsregion hat, während Kanalkenntnis am Sender diese ver- größern kann. Anschließend betrachten wir bidirektionale Relais-Kommunikation in unkoordinierten drahtlosen Netzwerken. In solchen Netzwerken wird die Kommunikation durch unbekannte, sich beliebig ändernde Interferenz gestört. Wir betrachten den diskreten gedächtnislosen bidirektionalen beliebig variierenden Broadcastkanal und leiten die Kapazitätsregion für deterministische und randomisierte Kodierungsstrategien her. Weiterhin analysieren wir Empfänger mit Listen-Dekodierern und charakterisieren die zugehörige Kapazitätsregion in Abhängigkeit der erlaubten Listengrößen und der Symmetrisierung des Kanals. Im letzten Teil der Dissertation betrachten wir die effiziente Implementierung verschiedener Dienste auf der physikalischen Schicht für bidirektionale Relais-Netzwerke mit diskreten gedächtnislosen Kanälen sowie für Netzwerke mit mehreren Antennen. Wir betrachten die Implementierung von Multicast Diensten und analysieren den bidirektionalen Broad- castkanal mit gemeinsamen Nachrichten. Wir leiten die entsprechende Kapazitätsregion her. Dabei zeigt sich, dass die kapazitätserreichenden Strategien für die bidirektionalen Broad- castkanäle mit und ohne gemeinsamen Nachrichten eng miteinander verbunden sind. An- schließend betrachten wir die Implementierung von zusätzlichen vertraulichen Nachrichten. Wir nutzen das Kriterium der informationstheoretischen Sicherheit, um die zugehörigen Sicherheitskapazitätsregionen herzuleiten. Im abschließenden Fazit geben wir einen Ausblick auf offene Probleme und zukünftige Forschungsrichtungen. iii Abstract Recent research developments show that the concept of bidirectional relaying significantly improves the performance and coverage in wireless networks. In this thesis we consider bidirectional relaying in a three-node network, where a relay establishes a bidirectional com- munication between two other nodes using a decode-and-forward protocol. In the first part we consider the problem of imperfect channel state information and study the discrete memoryless compound bidirectional broadcast channel. We derive the capacity region and further discuss the cases where either the transmitter or the receivers have perfect channel state information. It shows that channel knowledge on the receiver side has no influence on the achievable rates while on the transmitter side it increases the capacity. In the next part we consider bidirectional relaying in uncoordinated wireless networks, where the communication is disturbed by unknown varying interference from other transmitters outside the bidirectional relay network. Accordingly, we study the discrete memoryless arbitrarily varying bidirectional broadcast channel and derive the corresponding capacity regions for deterministic and random coding strategies. We further study the influence of list decoding and characterize the list capacity region in terms of the list sizes at the receivers and of the symmetrizability of the channel. Then we impose constraints on the permissible codewords and sequences of channel states and finally analyze the case of unknown varying additive interference. In the last part we address the problem of physical layer service integration in discrete memo- ryless and multi-antenna Gaussian bidirectional relay networks. First, we consider multicast services and, accordingly, study the bidirectional broadcast channel with common messages. We derive the capacity region and thereby establish a strong connection with the correspond- ing scenario without common messages. Then, we take into account that there are also ser- vices with certain secrecy constraints. We use the concept of information theoretic security to model this requirement and study the additional integration of confidential messages. We derive the capacity-equivocation and secrecy capacity regions. Finally, we end with a conclusion and give an outlook on open problems and future research directions. iv Acknowledgments During my time at the Technische Universität Berlin and the Technische Universität Mün- chen I had the opportunity to meet many interesting persons. First and foremost, I want to thank my advisor Prof. Holger Boche for giving me the opportunity to work with him. I am grateful for the scientific freedom, his support, and endless motivation. I would also like to express my sincere gratitude to Prof. Vincent Poor for serving as the second referee of this dissertation. Further, I thank Prof. Gerhard Kramer for acting as the chairman of my thesis committee. I want to thank all my colleagues for the pleasant social atmosphere and the stimulating discussions. Many thanks go to Tobias Oechtering for collaborating with me and guiding me in my first steps. Further, I thank Igor Bjelakovic´ for collaborating with me and teaching me information theory down to the very last detail. Special thanks go to Ullrich Mönich for sharing the room with me most of the time of our Ph.D. studies. My heartfelt gratitude goes to my family for their love and unquestioning support. Finally, my special and heartfelt thanks go to Anabel. Without her love and encouragement this work would not have been possible. v Contents 1 Introduction 1 1.1 Motivation . 1 1.2 Contribution and Outline of the Thesis . 4 2 Decode-and-Forward Bidirectional Relaying 7 2.1 Multiple Access Phase . 8 2.2 Bidirectional Broadcast Phase . 9 2.3 Bidirectional Achievable Rate Region . 12 3 Bidirectional Relaying Under Channel Uncertainty 13 3.1 Compound Multiple Access Channel . 15 3.2 Compound Bidirectional Broadcast Channel . 16 3.3 Universal Strategy and Capacity Region . 18 3.3.1 Finite Compound Channel . 19 3.3.2 Arbitrary Compound Channel . 23 3.4 Partial Channel State Information at Transmitter or Receivers . 25 3.4.1 CSI at the Receivers . 25 3.4.2 CSI at the Transmitter . 26 3.5 Numerical Example and Game-Theoretic Interpretation . 30 3.6 Discussion . 32 4 Bidirectional Relaying in Uncoordinated Networks 34 4.1 Arbitrarily Varying Multiple Access Channel . 36 4.2 Arbitrarily Varying Bidirectional Broadcast Channel . 40 4.3 Random Code Construction . 44 4.3.1 Compound Bidirectional Broadcast Channel . 46 4.3.2 Robustification . 47 4.3.3 Converse . 48 4.4 Deterministic Code Construction . 49 4.4.1 Random Code Reduction . 49 4.4.2 Elimination of Randomness . 51 4.5 List Decoding . 53 4.5.1 Symmetrizability . 53 vii Contents 4.5.2 Achieving Positive Rates . 54 4.6 Input and State Constraints . 66 4.6.1 Random Code Capacity Region . 69 4.6.2 Deterministic Code Capacity Region . 72 4.7 Unknown Varying Additive Interference . 78 4.7.1 Traditional Interference Coordination . 79 4.7.2 Relay-to-Receivers Coordination . 82 4.8 Discussion . 83 5 Physical Layer Service Integration in Bidirectional Relay Networks 85 5.1 Bidirectional Broadcast Channel with Common and Confidential Messages 87 5.2 Integration of Common Messages . 89 5.2.1 Capacity Region for Discrete Memoryless Channels . 89 5.2.2 Capacity Region for MIMO Gaussian Channels . 93 5.2.3 Covariance Optimization Problem . 97 5.2.4 Capacity Achieving Transmit Strategies . 98 5.2.5 Applications . 105 5.3 Integration of Confidential Messages . 106 5.3.1 Bidirectional Broadcast Channel with Confidential Messages . 106 5.3.2 Secrecy-Achieving Coding Strategy . 107 5.3.3 Converse . 115 5.4 Integration of Common and Confidential Messages . 117 5.4.1 Achievability . 119 5.4.2 Converse . 121 5.5 Confidential Messages in MIMO Gaussian Bidirectional Relay Networks . 122 5.5.1 Aligned MIMO Bidirectional Broadcast Channel . 124 5.5.2 General MIMO Bidirectional Broadcast Channel . 132 5.5.3 Numerical Example and Discussion . 135 5.6 Discussion . 138 6 Conclusion 139 A Additional Proofs 143 B Types and Typical Sequences 169 Publication List 176 References 180 viii List of Figures 2.1 Decode-and-Forward Bidirectional Relaying . 7 3.1 Bidirectional relaying under channel uncertainty . 14 3.2 Capacity regions of the compound BBC . 31 3.3 Compound BBC

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    205 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us