Frequency-Domain Analysis Fourier Series Consider a Continuous Complex Signal

Frequency-Domain Analysis Fourier Series Consider a Continuous Complex Signal

Frequency-Domain Analysis Fourier Series Consider a continuous complex signal x(t) ∈ [−T/2,T/2]. Represent x(t) using an arbitrary orthonormal basis ϕn(t): ∞ X x(t) = αnϕn(t) n=−∞ Orthonormality condition: Z T/2 1 ∗ ϕn(t)ϕk(t)dt = δ(n − k). T −T/2 ∗ Multiplying the above expansion with ϕk(t) and integrating over the interval, we obtain ∞ 1 Z T/2 1 Z T/2 X x(t)ϕ∗(t)dt = α ϕ (t)ϕ∗(t)dt T k T n n k −T/2 −T/2 n=−∞ ∞ ! X 1 Z T/2 = α ϕ (t)ϕ∗(t)dt n T n k n=−∞ −T/2 ∞ X = αnδ(n − k) = αk. n=−∞ EE 524, Fall 2004, # 3 1 Thus, the coefficients of expansion are given by Z T/2 1 ∗ αk = x(t)ϕk(t)dt. T −T/2 Proposition. The functions ϕn(t) = exp(j2πnt/T ) are orthonormal at the interval [−T/2,T/2]. Proof. T/2 T/2 1 Z 1 Z 2π(n−k) ∗ j T t ϕn(t)ϕk(t)dt = e dt T −T/2 T −T/2 sin[π(n − k)] = = δ(n − k). π(n − k) 2 Thus, we can take exponential functions ϕn(t) = exp(j2πnt/T ) as orthonormal basis =⇒ we obtain Fourier series. Fourier series for a periodic signal x(t) = x(t + T ): ∞ X j 2πnt x(t) = Xne T n=−∞ Z T/2 1 −j 2πnt Xn = x(t)e T dt. T −T/2 EE 524, Fall 2004, # 3 2 Fourier coefficients can be viewed as a signal spectrum: 2πn X ∼ X(Ω ), where Ω = ⇒ n n n T Fourier series can be applied to analyze signal spectrum! Also, this interpretation implies that periodic signals have discrete spectrum. Example: Periodic sequence of rectangles: Z T/2 Z τ/2 1 −j 2πnt 1 −j 2πnt Xn = x(t)e T dt = Ae T dt T −T/2 T −τ/2 τ Aτ sin(πnT ) = · τ real coefficients. T πnT EE 524, Fall 2004, # 3 3 Remarks: • In general, Fourier coefficients are complex-valued, ∗ • For real signals, X−n = Xn. • Alternative expressions exist for trigonometric Fourier series, exploiting summation of sine and cosine functions. EE 524, Fall 2004, # 3 4 Convergence of Fourier Series Dirichlet conditions: Dirichlet conditions are met for most of the signals encountered in the real world. Still, convergence has some interesting characteristics: N X j 2πnt xN (t) = Xne T . n=−N As N → ∞, xN (t) exhibits Gibbs’ phenomenon at points of discontinuity. Under the Dirichlet conditions: EE 524, Fall 2004, # 3 5 • The Fourier series = x(t) at points where x(t) is continuous, • The Fourier series = “midpoint” at points of discontinuity. Demo: Fourier series for continuous-time square wave (Gibbs’ phenomenon). http://www.jhu.edu/~signals/fourier2/index.html. EE 524, Fall 2004, # 3 6 Review of Continuous-time Fourier Transform What about Fourier representations of nonperiodic continuous- time signals? Assuming a finite-energy signal and T → ∞ in the Fouries series, we get limT →∞ Xn = 0. Trick: To preserve the Fourier coefficients from disappearing as T → ∞, introduce Z T/2 −j 2πnt Xen = TXn = x(t)e T dt. −T/2 EE 524, Fall 2004, # 3 7 Transition to Fourier transform: X(Ω) = lim Xen T →∞ Z T/2 −j 2πnt = lim x(t)e T dt T →∞ −T/2 Z ∞ = x(t)e−jΩtdt, −∞ where the “discrete” frequency 2πn/T becomes the continuous frequency Ω. Transition to inverse Fourier transform: ∞ ∞ X j 2πnt X Xen j 2πnt x(t) = lim Xne T = lim e T T →∞ T →∞ T n=−∞ n=−∞ 1 Z ∞ 2π 2πn = X(Ω)ejΩtdΩ ⇐ dΩ = , Ω = . 2π −∞ T T EE 524, Fall 2004, # 3 8 Continuous-time Fourier transform (CTFT): Z ∞ X(Ω) = x(t)e−jΩtdt, −∞ 1 Z ∞ x(t) = X(Ω)ejΩtdΩ. 2π −∞ Example: Finite-energy rectangular signal: Z ∞ X(Ω) = x(t)e−jΩtdt −∞ Z τ/2 = Ae−jΩtdt −τ/2 sin(Ωτ/2) = Aτ real spectrum. Ωτ/2 EE 524, Fall 2004, # 3 9 Remarks: • In general, Fourier spectrum is complex-valued, • For real signals, X(−Ω) = X∗(Ω). EE 524, Fall 2004, # 3 10 Dirac Delta Function Definition: ∞, t = 0, Z ∞ δ(t) = , δ(t)dt = 1. 0, t 6= 0 −∞ Do not confuse continuous-time δ(t) with discrete-time δ(n)! Sifting property: Z ∞ f(t)δ(t − τ)dt = f(τ). −∞ The spectrum of δ(t − t0): Z ∞ X(Ω) = x(t)e−jΩtdt −∞ Z ∞ −jΩt = δ(t − t0)e dt −∞ = e−jΩt0. Delta function in time domain: 1 Z ∞ δ(t) = ejΩtdΩ. 2π −∞ EE 524, Fall 2004, # 3 11 Delta function in frequency domain: 1 Z ∞ ∞, Ω = 0, δ(Ω) = e−jΩtdt = . 2π −∞ 0, Ω 6= 0 For signal x(t) = AejΩ0t we have Z ∞ X(Ω) = x(t)e−jΩtdt −∞ Z ∞ = A e−j(Ω−Ω0)tdt −∞ = A 2π δ(Ω − Ω0). EE 524, Fall 2004, # 3 12 Harmonic Fourier Pairs Delta function in frequency domain: jΩ0t e ↔ 2π δ(Ω − Ω0), cos(Ω0t) ↔ π [δ(Ω − Ω0) + δ(Ω + Ω0)], π sin(Ω t) ↔ [δ(Ω − Ω ) − δ(Ω + Ω )]. 0 j 0 0 EE 524, Fall 2004, # 3 13 Parseval’s Theorem for CTFT Z ∞ 1 Z ∞ |x(t)|2dt = |X(Ω)|2dΩ −∞ 2π −∞ 1 Z ∞ |X(Ω)|2dΩ 2π −∞ 1 Z ∞ Z ∞ Z ∞ = x(t)x∗(τ)e−jΩ(t−τ)dtdτ dΩ 2π −∞ −∞ −∞ Z ∞ Z ∞ 1 Z ∞ = x(t)x∗(τ) ejΩ(τ−t)dΩ dtdτ −∞ −∞ 2π −∞ | {z } δ(τ−t) Z ∞ = |x(t)|2dt. −∞ EE 524, Fall 2004, # 3 14 Discrete-time Fourier Transform (DTFT) Represent continuous signal x(t) via discrete sequence x(n): ∞ X x(t) = x(n)δ(t − nT ). n=−∞ Substituting this equation into the CTFT formula, we obtain: ∞ Z ∞ X X(Ω) = x(n)δ(t − nT )e−jΩtdt −∞ n=−∞ ∞ X Z ∞ = x(n) δ(t − nT )e−jΩtdt n=−∞ −∞ ∞ X = x(n)e−jΩnT . n=−∞ Switch to the discrete-time frequency, i.e. use ω = ΩT : ∞ X X(ω) = x(n)e−jωn. n=−∞ X(ω) is periodic with period 2π: ∞ X X(ω) = x(n)e−jωn e−j2πn | {z } n=−∞ 1 EE 524, Fall 2004, # 3 15 ∞ X = x(n)e−j(ω+2π)n = X(ω + 2π). n=−∞ Trick: in computing inverse DTFT, use only one period of X(ω): ∞ X X(ω) = x(n)e−jωn DTFT, n=−∞ 1 Z π x(n) = X(ω)ejωndω Inverse DTFT. 2π −π Inverse DTFT: Proof. 1 Z π x(n) = X(ω)ejωndω 2π −π ∞ 1 Z π X = x(m)ejω(n−m)dω 2π −π m=−∞ ∞ X 1 Z π = x(m) ejω(n−m)dω = x(n). 2π −π m=−∞ | {z } δ(n−m) 2 EE 524, Fall 2004, # 3 16 Fourier Series vs. DTFT ∞ Z T/2 X j 2πnt 1 −j 2πnt x(t) = X e T ,X = x(t)e T dt FS n n T n=−∞ −T/2 ∞ X 1 Z π X(ω) = x(n)e−jωn, x(n) = X(ω)ejωndω DTFT 2π n=−∞ −π Observation: Replacing, in Fourier Series x(t) → X(ω), Xn → x(n), t → −ω, T → 2π, we obtain DTFT! An important conclusion: DTFT is equivalent to Fourier series but applied to the “opposite” domain. In Fourier series, a periodic continuous signal is represented as a sum of exponentials weighted by discrete Fourier (spectral) coefficients. In DTFT, a periodic continuous spectrum is represented as a sum of exponentials, weighted by discrete signal values. EE 524, Fall 2004, # 3 17 Remarks: • DTFT can be derived directly from the Fourier series, • All Fourier series results can be applied to DTFT • Duality between time and frequency domains. EE 524, Fall 2004, # 3 18 Parseval’s Theorem for DTFT ∞ X 1 Z π |x(n)|2 = |X(ω)|2dω 2π n=−∞ −π 1 Z π |X(ω)|2dω 2π −π ∞ ∞ 1 Z π X X = x(n)x∗(m)e−jω(n−m)dω 2π −π n=−∞ m=−∞ ∞ ∞ X X 1 Z π x(n)x∗(m) e−jω(n−m)dω 2π −π n=−∞ m=−∞ | {z } δ(n−m) ∞ X = |x(n)|2. n=−∞ EE 524, Fall 2004, # 3 19 When Does DTFT Exist (i.e. |X(ω)| < ∞)? Sufficient condition: ∞ X |x(n)| < ∞. n=−∞ ∞ X −jωn |X(ω)| = x(n)e n=−∞ ∞ X ≤ |x(n)| |e−jωn| n=−∞ | {z1 } ∞ X = |x(n)| < ∞. n=−∞ Example: Finite-energy rectangular signal: N/2 N/2 X X |X(ω)| = Ae−jωn = A e−jωn n=−N/2 n=−N/2 N+1 sin( 2 ω) = A(N + 1) ω (N + 1) sin( 2 ) EE 524, Fall 2004, # 3 20 N+1 sin( 2 ω) ≈ A(N + 1) ω for ω π (N + 1) 2 | {z } well-known function Both functions look very similar in their “mainlobe” domain. EE 524, Fall 2004, # 3 21 DTFT — Convolution Theorem If X(ω) = F{x(n)} and H(ω) = F{h(n)} and ∞ X y(n) = x(k)h(n − k) = {x(n)} ? {h(n)} k=−∞ then Y (ω) = F{y(n)} = X(ω)H(ω). ∞ ∞ X X Y (ω) = F{y(n)} = x(k)h(n − k) e−jωn | {z } n=−∞ k=−∞ m ∞ ∞ X X = x(k)h(m)e−jω(m+k) m=−∞ k=−∞ ∞ ( ∞ ) X X = x(k)e−jωk h(m)e−jωm k=−∞ m=−∞ = X(ω)H(ω). Windowing theorem: If X(ω) = F{x(n)}, W (ω) = F{w(n)}, and y(n) = x(n)w(n), then 1 Z π Y (ω) = F{y(n)} = X1(λ)X2(ω − λ)dλ.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    49 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us