How to Form a Millisecond Magnetar ? Magnetic Field Amplification in Protoneutron Stars

How to Form a Millisecond Magnetar ? Magnetic Field Amplification in Protoneutron Stars

How to form a millisecond magnetar ? Magnetic field amplification in protoneutron stars Jérôme Guilet Max-Planck-Princeton Center (MPA, Garching) for plasma physics collaborators Ewald Müller, Thomas Janka, Oliver Just (MPA Garching) Andreas Bauswein (Heidelberg) Tomasz Rembiasz, Martin Obergaulinger, Pablo Cerda-Duran, Miguel Angel Alloy (Valencia) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 1/33 Plan of the talk 1. Introduction : Magnetic fields in core collapse supernovae 2. Can the magnetorotational instability grow ? Linear analysis → Effects of neutrino radiation 3. How strong is the final magnetic field ? Numerical simulations → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations 4. Conclusion & perspectives Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 2/33 Introduction Core collapse: formation of a neutron star Massive star Hydrogen NS Explosion Helium 600 millions km Oxygen Iron ? Iron -sphere Stalled accretion Iron 40 km 3000 km NS shock 1.4 Msol Collapse of the iron core Neutrino emission Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 3/33 Introduction A diversity of explosions Explosion kinetic energy : → Typical supernova 1051 ergs → Neutrino driven explosions ? e.g. Bruenn+14, Melson+15 52 → Rare hypernova (& GRB) 10 ergs → Millisecond magnetar ? e.g. Burrows+07, Takiwaki+09,11 Bucciantini+09, Metzger+11 Total luminosity : → Typical supernova 1049 ergs → Superluminous supernovae 1051 ergs → Millisecond magnetar ? e.g. Woosley+10, Dessart+12, Nicholl+13, Inserra+13 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 4/33 Introduction Magnetic explosions ? Strong magnetic field: B ~ 1015 G + fast rotation (period of few milliseconds) => powerful jet-driven explosions ! e.g. Sibata+06, Burrows+07, Dessart+08, Takiwaki+09,11, Winteler+12 Burrows+07 But in 3D, jets can be unstable to kink instability Moesta+2014 Open question: Can magnetic explosions explain hypernovae ? Moesta+14 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 5/33 Are millisecond magnetars powering Introduction superluminous supernovae ? Delayed energy injection by magnetar spin- down on timescale of weeks-months => very high luminosity Light curves can be fitted by: - strong dipole magnetic field: B ~ 1014-1015 G - fast rotation: P ~ 1-10 ms Talk by Ken Chen last week Inserra+2013 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 6/33 Introduction Galactic magnetars Magnetars: Anomalous X-ray pulsars (AXP) Soft gamma repeater (SGR) Strong dipole magnetic field: B ~ 1014-1015 G Slow rotation: P ~ 1-10 s Typical age: 4 5 10 -10 years Talks by Michael Gabler & Pablo Cerda-Duran Rotation at birth unknown: were some or all of them born as millisecond magnetars ? Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 7/33 Missing theoretical piece: Introduction magnetic field origin Huge range of magnetic field strength : → Initially « weak » magnetic field : ( ? ) → After compression by the core-collapse: ( ? ) → Magnetar strength : Amplification mechanism ? Magnetorotational instability (MRI) ? Convective dynamo ? Similar to accretion disks Similar to solar & planetary dynamos → application to protoneutron stars → need of numerical simulations for neutron stars Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 8/33 Introduction The magnetorotational instability (MRI) B In ideal MHD (i.e. no resistivity or viscosity) : Condition for MRI growth Growth rate : with → Fast growth for fast rotation Wavelength : → Short wavelength for weak magnetic field Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 9/33 Introduction Rotation profile in the proto-neutron star Hydrostatic proto-neutron star Infalling matter Rotation frequency profile : → Differential rotation at radii > 10 km Rotation frequency decreases with radius : => MRI unstable ! Akiyama et al (2003) Obergaulinger et al (2009) Radius (km) Ott et al (2006) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 10/33 Introduction Proto-neutron stars vs disks conditions Main differences between proto-neutron stars and accretion disks: → Neutrinos: viscosity and drag → Prevent MRI growth ? → Buoyancy: radial entropy and composition gradients → Impact on magnetic field amplification by MRI ? → Geometry: spherical vs thin disk → Help global coherence ? neutrinos ! Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 11/33 2. Can the magnetorotational instability (MRI) grow ? Effects of neutrino radiation Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 12/33 MRI growth Effects of neutrino radiation : two regimes density scaleheight neutrino mean free path diffusive regime : neutrino viscosity optically thin regime : neutrino drag Neutron star structure from a simulation by Hanke et al (2013) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 13/33 MRI growth MRI with neutrino viscosity ideal MRI viscous MRI viscous ideal MRI MRI Too slow Dimensionless number : e.g. Pessah & Chan (2008) MRI growth requires a minimum initial magnetic field strength of > 1012 G... Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 14/33 MRI growth MRI with neutrino drag ideal MRI ideal « dragged » « dragged » MRI MRI MRI Neutrino drag : , with damping rate : The MRI can grow near the PNS surface from any weak field strength ! Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 15/33 MRI growth MRI growth: different regimes Guilet et al (2015) Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 16/33 MRI growth Application to neutron star mergers massive neutron star torus Guilet+2016 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 17/33 3. How strong is the final magnetic field ? → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 18/33 magnetic field amplification Numerical simulations: local models - Small box : ~km size at a radius r ~ 20-40 km - Differential rotation => shearing periodic boundary conditions - Entropy/composition gradients + - Different numerical methods : spectral or finite volume - Fully compressible or quasi-incompressible approximation Obergaulinger+2009, Masada+2012, Guilet+2015, Rembiasz+2016a,b Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 19/33 magnetic field Channel mode termination by parasitic amplification instabilities Rembiasz et al. 2016a&b Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 20/33 3. How strong is the final magnetic field ? → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 21/33 MRI & buoyancy Buoyancy from entropy and lepton fraction gradients Brünt-Väisälä frequency : Linear analysis of MRI with buoyancy : stable buoyancy can stabilise the MRI But : thermal diffusion allows the growth Balbus & Hawley (1994), Menou et al (2003), Masada et al (2007) radial displacement suppressedfavored Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 22/33 MRI & buoyancy Linear MRI growth with buoyancy High thermal diffusion Low thermal diffusion Confirms linear analysis : thermal diffusion by neutrinos allows fast MRI growth Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 23/33 MRI &MRI buoyancy Jérôme Guilet (MPA Garching) – Formation of millisecond of magnetars Formation – Garching) (MPA Guilet Jérôme Guilet & Müller(2015) unstable buoyancy unstable Magnetic energy Impact of stratification on the MRI units of (1015 G)2 buoyancy parameter color: azimuthal color: magnetic field magnetic high diffusion low diffusion stable stratification stratification stable 24 /33 3. How strong is the final magnetic field ? → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 25/33 Magnetic Prandtl Dependence on the magnetic Prandtl number number Neutrino viscosity : Resistivity : Magnetic Prandtl number : Previous simulations used : Behaviour at very large magnetic Prandtl number ? Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 26/33 Magnetic Prandtl Dependence on the magnetic Prandtl number number Magnetic energy units of (1015 G)2 Behaviour at very large magnetic Prandtl number ? Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 27/33 3. How strong is the final magnetic field ? → Channel mode termination → Influence of buoyancy → Dependence on the magnetic Prandtl number → The dawn of global simulations Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 28/33 Global simulations Semi-global simulations Local in vertical direction global in horizontal direction Good vertical resolution but low horizontal resolution Masada+14 Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 29/33 Global simulations Global models Moesta+2015 : first simulation with large-scale magnetic field generation.. but started with magnetar strength dipolar field Jérôme Guilet (MPA Garching) – Formation of millisecond magnetars 30/33 Global simulations A simplified full-sphere MRI simulation Preliminary simulations of a simplified model

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us