VEDANTU COMMERCE Function | Domain, Codomain, Range Function | Domain, Codomain, Range Function | Domain, Codomain, Range

VEDANTU COMMERCE Function | Domain, Codomain, Range Function | Domain, Codomain, Range Function | Domain, Codomain, Range

Function | Domain, CoDomain, Range VEDANTU COMMERCE Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Thought of the Day Function | Domain, CoDomain, Range Save Yourself From Covid Function | Domain, CoDomain, Range Today’s Schedule Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Like Share Subscribe Function | Domain, CoDomain, Range Are You Ready For it…??? Function | Domain, CoDomain, Range Q. If function f = {(-2, -11), (-1, -7), (1, 1), (2, 5)} is described by a linear relation, then f(x) = A 5x - 2 B 4x + 3 C 2x + 3 D 4x - 3 Function | Domain, CoDomain, Range Well Done Ninjas…!!! Function | Domain, CoDomain, Range Well Done Ninjas…!!! Function | Domain, CoDomain, Range Are You Excited To Take Udaan…??? Function | Domain, CoDomain, Range Till Now We Covered... ● Sets ● Ordered Pairs ● Cartesian Product of two Sets ● Relation ● Domain & Range ● Functions Function | Domain, CoDomain, Range Today’s Objective ● Domain of a Function ● Problems ● Range of a Function ● Problems ● Codomain of a Function ● Problems Function | Domain, CoDomain, Range Domain, Codomain & Range -2 a -1 b 0 c 1 d Range 2 e A B Domain Codomain Function | Domain, CoDomain, Range Domain If f: A ⟶ B be a function, then all the input values that satisfy the function or the elements in set A, are known as domain. Ex: The function is not defined when x = 0. So, A = R - {0} Function | Domain, CoDomain, Range Q. The domain of the function f: A ⟶ B, is A R B R - {1} C [-3, 3] - {1} D R - [-3, 3] Function | Domain, CoDomain, Range Q. The domain of the function f: A ⟶ B, is A R B R - {1} C [-3, 3] - {1} D R - [-3, 3] Solution: The function is defined when the denominator of the rational function is not zero. The numerator is a radical function which should not have negative value inside the radical. So, Function | Domain, CoDomain, Range Solution: Function | Domain, CoDomain, Range Q. The domain of the function f: A ⟶ B, is A R B R - {-1, 0, 1} C R - {1} D R - [-1, 1] Function | Domain, CoDomain, Range Q. The domain of the function f: A ⟶ B, is A R B R - {-1, 0, 1} C R - {1} D R - [-1, 1] Solution: The function is defined when the denominator of the rational function is not zero. The denominator of the function is a radical function, which is defined when the value inside the radical is greater than or equal to zero. So, Function | Domain, CoDomain, Range Solution: Function | Domain, CoDomain, Range Range If f: A ⟶ B be a function, then the set of values of functions which it attains at points in its domain, is called Range. Ex: f: A ⟶ B; f(x) = 3x + 2 The function will return all the real values. So,Range(f), B = R Function | Domain, CoDomain, Range Q. The range of the function f: A ⟶ R, f(x) = x2 + 1, where A ={-1, 0, 2, 4} A {-1, 0, 2, 4} B {1, 2, 5, 17} C {0, 2, 5, 17} D {1, 2, 4, 17} Function | Domain, CoDomain, Range Q. The range of the function f: A ⟶ R, f(x) = x2 + 1, where A ={-1, 0, 2, 4} A {-1, 0, 2, 4} B {1, 2, 5, 17} C {0, 2, 5, 17} D {1, 2, 4, 17} Solution: So, the range is, {2, 1, 5, 17} Function | Domain, CoDomain, Range Q. If f: A ⟶ R, f(x) = x2 + x - 2, where A ={-2, -1, 1, 2}, then the range of the function is, A {-2, 0, 4} B {-2, 0, 4, 0} C {-2, -1, 0, 1} D {-2, -1, 0, 4} Function | Domain, CoDomain, Range Q. If f: A ⟶ R, f(x) = x2 + x - 2, where A ={-2, -1, 1, 2}, then the range of the function is, A {-2, 0, 4} B {-2, 0, 4, 0} C {-2, -1, 0, 1} D {-2, -1, 0, 4} Solution: Function | Domain, CoDomain, Range Procedure to calculate Range ● Put y = f(x) and solve for x in terms of y, x = g(y). Function | Domain, CoDomain, Range Procedure to calculate Range ● Interchange x & y, find the values of x for which y is not defined. y is not defined when x = -1. y ∈ R - {-1}. ● The set of values obtained in step II in the range of f(x). So, range = R - {-1} Function | Domain, CoDomain, Range Q. function is A [0, 4] B (-∞, -4) ∪ (4, ∞) C [-4, 4] D None Function | Domain, CoDomain, Range Q. function is A [0, 4] B (-∞, -4) ∪ (4, ∞) C [-4, 4] D None Solution: Function | Domain, CoDomain, Range Solution: Function | Domain, CoDomain, Range Codomain If f: A ⟶ B be a function, then the set B is known as the codomain of the function. Function | Domain, CoDomain, Range Q. The codomain of the function f: A ⟶ R, f(x) = 2x2 + x + 3, where A ={-1, 0, 2, 4} is A {-1, 0, 2, 4} B {1, 2, 5, 17} C R D {1, 2, 4, 17} Function | Domain, CoDomain, Range Q. The codomain of the function f: A ⟶ R, f(x) = 2x2 + x + 3, where A ={-1, 0, 2, 4} is A {-1, 0, 2, 4} B {1, 2, 5, 17} C R D {1, 2, 4, 17} Solution: The given function is, f: A ⟶ R, f(x) = 2x2 + x + 3 It is defined for set A and R. So, the codomain for the function is all the real numbers, R. Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Q. The range of the function is A [1, ∞) B [2, ∞) C D None of these Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range MON-TUE-THUR-FRI @ 1:00 PM Function | Domain, CoDomain, Range START YOUR PREPARATION OF CLASS 11 NOW. Mega Offer Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Function | Domain, CoDomain, Range Like Share Subscribe Function | Domain, CoDomain, Range V C E O D M M A E N R T C U E.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    48 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us