J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey N. Ben´ıteza,b, R. Dupkeb,c,d, M. Molese,a, L. Sodre´f, A. J. Cenarroe, A. Mar´ın-Franche, K. Taylorb, D. Cristobal´ e, A. Fernandez-Soto´ l, C. Mendes de Oliveiraf, J. Cepa-Nogue´h, L.R. Abramoi, J.S. Alcanizb, R. Overzierb, C. Hernandez-Monteagudo´ e, E. J. Alfaroa, A. Kanaanj, J. M. Carvanob, R. R. R. Reisk, E. Mart´ınez Gonzalez´ l, B. Ascasoa, F. Ballesterosg, H. S. Xavieri, J. Varelae, A. Ederoclitee, H. Vazquez´ Ramio´f, T. Broadhurstn, E. Cyprianof, R. Anguloe, J. M. Diegol, A. Zandivarez´ o, E. D´ıazo, P. Melchiorp, K. Umetsuq, P. F. Spinellir, A. Zitrins, D. Coean, G. Yepest, P. Vielval, V. Sahniu, A. Marcos-Caballerol, F. Shu Kitaurav, A. L. Marotow, M. Masipat, S. Tsujikawax, S. Carneiroy, J. Gonzalez´ Nuevol, G. C. Carvalhob, M. J. Rebouc¸asav, J. C. Carvalhob,z, E. Abdallai, A. Bernuib, C. Pigozzoy, E. G. M. Ferreirai, N. Chandrachani Devib, C. A. P. Bengaly Jr.b, M. Campistab, A. Amorimg, N. V. Asariaa, A. Bongiovannih, S. Bonolie, G. Bruzualab, N. Cardiell, A. Cavaac, R. Cid Fernandesj, P. Coelhoai, A. Cortesif, R. G. Delgadoa, L. D´ıaz Garciae, J. M. R. Espinosah, E. Gallianob, J. I. Gonzalez-Serrano´ l, J. Falcon-Barroso´ h, J. Fritzad, C. Fernandesb, J. Gorgasl, C. Hoyosf, Y. Jimenez-Teja´ a,b, J. A. Lopez-Aguerri´ h, C. Lopez-San´ Juane, A. Mateusj, A. Molinoa, P. Novaisf, A. O’Millf, I. Oteoh, P.G. Perez-Gonz´ alez´ l, B. Poggiantiaf, R. Proctorb, E. Ricciardellig, P. Sanchez-Bl´ azquez´ t, T. Storchi-Bergmannag, E. Tellesb, W. Schoennella, I. Trujilloh, A. Vazdekish, K. Viironene, S. Daflonb, T. Aparicio Villegasb,a, D. Rochaah, T. Ribeiroai, M. Borgesb, S. L. Martinsah, W. Marcolinoah, D. Mart´ınez-Delgadoi,aj, M.A. Perez-Torres´ f, B.B. Siffertk, M.O. Calvao˜ k, M. Sakom, R. Kesslerak, A. Alvarez-Candal´ b, M. De Pra´b, F. Roigb, D. Lazzarob, J. Gorosabel´ a, R. Lopes de Oliveiraal, G. B. Lima-Netof, J. Irwind, J. F. Liuaj, E. Alvarez´ t, I. Balmes´ i, S. Chuecae, M.V. Costa-Duartei, A. A. da Costai, M.L.L. Dantasf, A. Y. D´ıaze, J. Fabregatg, F. Ferrariao, B. Gavelat, S. G. Graciaf, N. Gruelae, J. L. L. Gutierrez´ f, R. Guzman´ ap, J. D. Hernandez-Fern´ andez´ e, D. Herranzh, L. Hurtado-Gilq, F. Jablonskyau, R. Laporteau, L.L. Le Tiranf, J Licandroh, M. Limai, E. Mart´ınaq, V. Mart´ınezg, J. J. C. Monterof, P. Penteadof, C.B. Pereirab, V. Perisg, V. Quilisg, M. Sanchez-Portal´ ar, A. C. Sojaf, E. Solanoao, J. Torraas, L. Valdivielsoe aInstituto de Astrof´ısica de Andaluc´ıa-CSIC, Granada, Spain bNational Observatory, Rio de Janeiro, Brazil cThe University of Michigan, Ann Arbor, MI, USA dThe University of Alabama, Tuscaloosa,AL, USA eCentro de Estudios de F´ısica del Cosmos, Teruel, Spain fInstituto de Astronomia, Geofısica e Cienciasˆ Atmosfericas,´ Universidade of Sao˜ Paulo, Brazil gUniversitat de Valencia, Spain hInstituto de Astrof´ısica de Canarias, Spain iInstituto de Fisica, University of Sao Paulo, Brazil jFederal University of Santa Catarina, Brazil kInstituto de Fisica, Federal University of Rio de Janeiro, Brazil lInstituto de Fisica de Cantabria, Spain mUniversity of Pennsylvania, PA, USA arXiv:1403.5237v1 [astro-ph.CO] 20 Mar 2014 nIkerbasque, Spain oUniversidad de Cordoba, Argentina pOhio State University, OH qAcademia Sinica, Institute of Astronomy and Astrophysics rMuseu de Astronomia e Cienciasˆ Afins, Brazil sCaltech, Pasadena, USA tUniversidad Autonoma´ de Madrid, Spain uIUCAA: Inter-University Centre for Astronomy and Astrophysics, India vLeibniz-Institut fr Astrophysik Potsdam, Germany wUniversidad Complutense de Madrid, Spain xTokyo University of Science, Japan yFederal University of Bahia, Brazil IThis documents describes J-PAS and outlines its main scientific goals Preprint submitted to Elsevier March 21, 2014 zFederal University of Rio Grande do Norte, Brazil aaLUTH, Observatoire de Paris, CNRS, France abCentro de Investigaciones de Astronom´ıa, Venezuela acGeneva Observatory, University of Geneva, Switzerland adUniversity of Ghent, Belgium aeUniversity of Sheffield, UK afAstronomical Observatory of Padova, Italy agFederal University of Rio Grande do Sul, Brazil ahValongo Observatory, Brazil aiSouthern Astrophysical Research (SOAR) Telescope, Chile ajMax-Planck-Institut fr Astronomie, Germany akKICP, University of Chicago, IL alFederal University of Sergipe, Brazil amNational astronomical Observatory, Chinese academy of Sciences, China anSpace Telescope Science Institute, Baltimore, Maryland aoFederal University of Rio Grande, Brazil apUniversity of Florida, Gainesville, FL, USA aqCentro de Astrobiolog´ıa (CAB-INTA-CSIC) arHerschel Science Center - ESAC asUniversitat de Barcelona, Spain atUniversity of Granada, Spain auInstituto de Pesquisas Espacais, Sao˜ Jose´ dos Campos, Brazil avCentro Brasileiro de Pesquisas F´ısicas, Rio de Janeiro, Brazil Abstract The Javalambre-Physics of the Accelerated Universe Astrophysical Survey (J-PAS) is a narrow band, very wide field Cosmological Survey to be carried out from the Javalambre Observatory in Spain with a purpose-built, dedicated 2.5m telescope and a 4:7ut◦ camera with 1.2Gpix. Starting in 2015, J-PAS will observe 8500ut◦ of Northern Sky and measure 0:003(1+z) precision photometric redshifts for 9×107 LRG and ELG galaxies plus several million QSOs, about 50 times more than the largest current spectroscopic survey, sampling an effective volume of ∼ 14 Gpc3 up to z = 1:3. J-PAS will be the first radial BAO experiment to reach Stage IV. J-PAS will also detect and measure the mass of 7 × 105 galaxy clusters and groups, setting constrains on Dark Energy which rival those obtained from BAO measurements. Thanks to the superb characteristics of the Javalambre site (seeing ∼ 0:700), J-PAS is expected to obtain a deep, sub-arcsec image of the northern sky, which combined with its unique photo-z precision will produce one of the most powerful cosmological lensing surveys before the arrival of Euclid. In addition, J-PAS unprecedented spectral time domain information will enable a self-contained SN survey that, without the need for external spectroscopic follow-up, will detect, classify and measure sz ∼ 0:5% redshifts for ∼ 4000 SNeIa and ∼ 900 core-collapse SNe. The key to the J-PAS potential is its innovative approach: the combination of 54 145A˚ filters, placed 100A˚ apart, and a multi-degree field of view (FOV) is a powerful “redshift machine”, with the survey speed of a 4000 multiplexing low resolution spectrograph, but many times cheaper and much faster to build. Moreover, since the J-PAS camera is equivalent to a very large, 4:7ut◦ “IFU”, it will produce a time-resolved, 3D image of the Northern Sky with a very wide range of Astrophysical applications in Galaxy Evolution, the nearby Universe and the study of resolved stellar populations. J-PAS will have a lasting legacy value in many areas of Astrophysics, serving as a fundamental dataset for future Cosmological projects. Keywords: Dark Energy, Cosmology, SNIa, Large Scale Structure, Baryonic Acoustic Oscillations, Lensing, Dark Matter, Galaxy Evolution, Stars, Solar System, Transients, Telescopes, Instrumentation, Photometric Redshifts 2 Contents 1 Introduction 7 1.1 Quasi-Spectroscopy: Wide field Narrow Band Imaging as a Redshift Machine . 7 2 J-PAS survey description 10 2.1 The filter system . 10 2.2 Observing strategy . 11 2.2.1 Exposure time and filter distribution . 11 2.2.2 Limiting magnitudes . 12 2.3 J-PAS Survey Area Definition . 19 2.3.1 Area Selection . 19 2.3.2 Raw observability from Javalambre . 19 2.3.3 Correction by dust column extinction . 19 2.3.4 Definition of the survey area . 21 2.3.5 Overlap with SDSS and SDSS Stripe 82 . 23 2.4 Expected performance . 25 2.4.1 Inputs for the empirical mocks . 25 2.4.2 Empirical mocks . 25 3 Scientific Goals I: Cosmology 30 3.1 The J-PAS Redshift Survey . 30 3.1.1 Cosmology with galaxy surveys . 30 3.1.2 The Fisher matrix approach . 32 3.1.3 Baryonic Acoustic Oscillations . 34 3.1.4 Forecasts for constraints from BAOs . 38 3.1.5 Field reconstructions from the redshift survey . 42 3.1.6 Morphology of the Cosmic Web . 42 3.1.7 N-body Mocks . 43 3.2 The J-PAS Cluster Survey . 45 3.2.1 Self-contained mass calibration . 48 3.2.2 Figure of Merit . 48 3.3 Joint constraints on Dark Energy from BAOs and cluster counts . 52 3.4 The J-PAS SN Cosmological Survey . 53 3.5 The J-PAS Lensing Survey . 56 3.5.1 Cosmic shear . 56 3.5.2 Galaxy-galaxy lensing . 57 3.5.3 Cluster Weak Lensing . 57 3.5.4 Cluster strong lensing . 59 3.5.5 Cross-correlation with Herschel . 60 3.6 Correlations with the Cosmic Microwave Background Anisotropies (CMB) . 61 3.6.1 Integrated Sachs Wolfe effect . 61 3.6.2 The thermal history of the Universe . 66 3.6.3 Bulk flows, missing baryons and redshift space distortions . 66 3.6.4 CMB lensing maps . 67 3.7 Alternative Cosmologies and Theories of gravity . 67 3.7.1 Quintessence . 67 3.7.2 Interaction in the dark sector . 68 3 3.7.3 Unified models of dark matter and dark energy . 69 3.7.4 The Lemaˆıtre-Tolman-Bondi Models . 70 3.7.5 Most general scalar-tensor theories . 70 3.7.6 f (R) − Gravity ...................................... 74 3.7.7 Vector-tensor theories of gravity . 75 3.7.8 Higher dimensions and massive gravity . 76 3.8 Inflation . 77 4 Scientific Goals II: the J-PAS Galaxy Evolution Survey 80 4.1 Measurement Techniques . 81 4.1.1 Redshifts and Sample size . 81 4.1.2 Stellar Population Modeling and Emission Line Measurements . 81 4.1.3 Density Field Construction .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages215 Page
-
File Size-