
Entropy aided Quantum error correction and fault tolerance Finding high thresholds Jesse Fern [email protected] Mathematics University of California, Berkeley Entropy aided Quantum error correction and fault tolerance – p. 1/13 Superoperator notation 1 Instead of ρ = 2 (I + cXX + cY Y + cZZ) 1 cX cY cZ Acted upon by a channel, which has a super-operator 1 0 0 0 (1) NXI NXX NXY NXZ N = NYI NYX NY Y NY Z NZI NZX NZY NZZ Entropy aided Quantum error correction and fault tolerance – p. 2/13 Channel map on [[n,k,d]] code E encodes k qubit state into n qubit state N represents the noise in encoded space Recovery operators Rβ Et decodes n qubit space into k qubit space G = Et ◦ O(R ) ◦N ◦E X β β Entropy aided Quantum error correction and fault tolerance – p. 3/13 Recovery optimization G = GRβ where GRβ = Et ◦ O(R ) ◦N ◦E X β β GRβ is the noise for syndrome β Find the optimal recovery operator Use the syndrome information from lower levels of the code for higher levels of the code Shannon entropy useful for calculations Entropy of Pauli errors h(pI) + h(pX) + h(pY ) + h(pZ) h(x) = −x log2 x Entropy aided Quantum error correction and fault tolerance – p. 4/13 Average error Doesn’t work so well 0.17 p=10.9620% p=10.9632% p=10.9644% 0.16 0.15 0.14 0.13 Probability of error 0.12 0.11 0.1 0 1 2 3 4 5 6 7 Level of concatenation Entropy aided Quantum error correction and fault tolerance – p. 5/13 Average entropy Works much better 0.503 p=10.9620% p=10.9632% 0.5025 p=10.9644% 0.502 0.5015 0.501 0.5005 0.5 Shannon entropy 0.4995 0.499 0.4985 0.498 0 1 2 3 4 5 6 7 Level of concatenation Entropy aided Quantum error correction and fault tolerance – p. 6/13 arXiv:quant-ph/0703258 Correctable noise of Quantum Error Correcting Codes under adaptive concatenation Extension of Poulin approach of optimizing recovery operators Same noise Pauli noise (pX,pY ,pZ) on each qubit Thresholds Code (p,p,p) (p − p2,p2,p − p2) [[5, 1, 3]] 6.299(6)% 10.951% [[7, 1, 3]] 6.270(3)% 10.963% Hashing 6.3097% 11.0028% Hashing rate is when the Shannon entropy is 1 Entropy aided Quantum error correction and fault tolerance – p. 7/13 Depolarizing noise that is correctable Correctable Fidelity (1 − pX − pY − pZ) 0.81071 Random coding (hashing rate) 0.80964 5 qubit bit flip (Shor, Smolin) 0.80944 5 qubit bit flip, 5 qubit phase flip (DiVincenzo, Shor, Smolin) 0.80912 5 qubit bit flip, 16 qubit phase flip (Smith, Smolin) 0.80880 5 qubit bit flip, 50 qubit phase flip (Fern, Whaley) 0.80870 5 qubit bit flip, 56 qubit phase flip, repeated [[5, 1, 3]] (Fern, Whaley) Entropy aided Quantum error correction and fault tolerance – p. 8/13 5 in n2 code thresholds 5 qubit bit flip concatenated with n2 qubit phase flip 0.06374 0.06372 0.0637 0.06368 0.06366 p 0.06364 0.06362 0.0636 0.06358 0.06356 10 20 30 40 50 60 70 80 90 100 n2 Entropy aided Quantum error correction and fault tolerance – p. 9/13 Knill's work Knill, Nature, 2005, quant-ph/0410199 CNOT has probability p of depolarizing error 4p Probability 15 of measurement error Massive post-selection of ancilla qubits Use quantum teleportation to bring in logical data qubits Knill gets a threshold of "above 3%" if no restriction on # of ancillas Entropy aided Quantum error correction and fault tolerance – p. 10/13 Entropy based fault tolerant calculations Assume independent noise Generalized (multiqubit) teleportation to perform CNOT Find total noise from teleportation Degeneracies lower the threshold Correct estimated threshold for degeneracies Entropy of correlated noise useful Entropy aided Quantum error correction and fault tolerance – p. 11/13 Fault tolerant thresholds No restrictions on overhead - extreme overhead Upper bounds 6.78% [[7, 1, 3]] CSS Code 6.88% [[23, 1, 7]] CSS Code 6.90% Hashing rate - Conjectured upper bound If no measurement errors 8.25% Entropy aided Quantum error correction and fault tolerance – p. 12/13 Papers J. Fern, J. Kempe, S. Simic, S.Sastry. Generalized Performance of Concatenated Quantum Codes – A Dynamical Systems Approach. IEEE Trans. Autom. Control. 51, 448 (2006), quant-ph/0409084 J. Fern Correctable noise of Quantum Error Correcting Codes under adaptive concatenation to appear Physical Review A, quant-ph/0703258 J. Fern, K.B. Whaley New lower bounds on the non-zero capacity of Pauli Channels arXiv:0708.1597 J. Fern An upper bound on quantum fault tolerant thresholds (in preparation) Entropy aided Quantum error correction and fault tolerance – p. 13/13.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-