Lecture 8 Transfer Functions and Convolution

Lecture 8 Transfer Functions and Convolution

S. Boyd EE102 Lecture 8 Transfer functions and convolution ² convolution & transfer functions ² properties ² examples ² interpretation of convolution ² representation of linear time-invariant systems 8{1 Convolution systems convolution system with input u (u(t) = 0, t < 0) and output y: t t y(t) = h(¿)u(t ¡ ¿) d¿ = h(t ¡ ¿)u(¿) d¿ Z0 Z0 abbreviated: y = h ¤ u in the frequency domain: Y (s) = H(s)U(s) ² H is called the transfer function (TF) of the system ² h is called the impulse response of the system PSfrag replacements block diagram notation(s): u y u y ¤ h H Transfer functions and convolution 8{2 Properties 1. convolution systems are linear: for all signals u1, u2 and all ®, ¯ 2 R, h ¤ (®u1 + ¯u2) = ®(h ¤ u1) + ¯(h ¤ u2) 2. convolution systems are causal: the output y(t) at time t depends only on past inputs u(¿), 0 · ¿ · t 3. convolution systems are time-invariant: if we shift the input signal u over T > 0, i.e., apply the input 0 t < T u(t) = ½ u(t ¡ T ) t ¸ 0 e to the system, the output is 0 t < T y(t) = ½ y(t ¡ T ) t ¸ 0 e in other words: convolution systems commute with delay Transfer functions and convolution 8{3 4. composition of convolution systems corresponds to ² multiplication of transfer functions ² convolution of impulse responses composition PSfrag replacements u A B y u BA y rami¯cations: ² can manipulate block diagrams with transfer functions as if they were simple gains ² convolution systems commute with each other Transfer functions and convolution 8{4 Example: feedback connection PSfrag replacements u G y in time domain, we have complicated integral equation t y(t) = g(t ¡ ¿)(u(¿) ¡ y(¿)) d¿ Z0 which is not easy to understand or solve . in frequency domain, we have Y = G(U ¡ Y ); solve for Y to get G(s) Y (s) = H(s)U(s); H(s) = 1 + G(s) (as if G were a simple scaling system!) Transfer functions and convolution 8{5 General examples ¯rst order LCCODE: y0 + y = u, y(0) = 0 take Laplace transform to get 1 Y (s) = U(s) s + 1 transfer function is 1=(s + 1); impulse response is e¡t t integrator: y(t) = u(¿) d¿ Z0 transfer function is 1=s; impulse response is 1 delay: with T ¸ 0, 0 t < T y(t) = ½ u(t ¡ T ) t ¸ T impulse response is ±(t ¡ T ); transfer function is e¡sT Transfer functions and convolution 8{6 Vehicle suspension system (simple model of) vehicle suspension system: y PSfrag replacements m k b u ² input u is road height (along vehicle path); output y is vehicle height ² vehicle dynamics: my00 + by0 + ky = bu0 + ku 0 assuming y(0) = 0, y (0) = 0, (and u(0¡) = 0), (ms2 + bs + k)Y = (bs + k)U bs + k TF from road height to vehicle height is H(s) = ms2 + bs + k Transfer functions and convolution 8{7 DC motor i θ PSfrag replacements 00 0 Jθ + bθ = ki (J is rotational inertia of shaft & load; b is mechanical resistance of shaft & load; k is motor constant) assuming θ(0) = θ0(0) = 0, k Js2£(s) + bs£(s) = kI(s); £(s) = I(s) Js2 + bs i.e., transfer function H from i to θ is k H(s) = Js2 + bs Transfer functions and convolution 8{8 Circuit examples consider a circuit with linear elements, zero initial conditions for inductors and capacitors, ² one independent source with value u ² y is a voltage or current somewhere in the circuit then we have Y (s) = H(s)U(s) example: RC circuit PSfrag replacements R u C y 0 1 RCy (t) + y(t) = u(t); Y (s) = U(s) 1 + sRC ¡ 1 1 ¡ impulse response is L 1 = e t=RC µ1 + sRC ¶ RC Transfer functions and convolution 8{9 to ¯nd H: write circuit equations in frequency domain: ² resistor: v(t) = Ri(t) becomes V (s) = RI(s) ² capacitor: i(t) = Cv0(t) becomes I(s) = sCV (s) ² inductor: v(t) = Li0(t) becomes V (s) = sLI(s) in frequency domain, circuit equations become algebraic equations Transfer functions and convolution 8{10 1F example: 1­ 1­ PSfrag replacements v¡ 1F vout v+ vin 1­ let's ¯nd TF from vin to vout (assuming zero initial voltages for capacitors) 1 s ² by voltage divider rule, V = V = V + in1 + 1=s ins + 1 ² current in lefthand resistor is (using V¡ = V+): V ¡ V¡ s 1 I = in = 1 ¡ V = V 1­ µ s + 1¶ in s + 1 in Transfer functions and convolution 8{11 ² I flows through 1Fk1­, yielding voltage 1 (1)(1=s) 1 V = V ins + 1 1 + 1=s in(s + 1)2 1 s2 + s ¡ 1 ² ¯nally we have V = V¡ ¡ V = V out in(s + 1)2 in (s + 1)2 so transfer function is s2 + s ¡ 1 1 1 H(s) = = 1 ¡ ¡ (s + 1)2 s + 1 (s + 1)2 impulse response is ¡ ¡ ¡ h(t) = L 1(H) = ±(t) ¡ e t ¡ te t we have t ¡¿ vout(t) = vin(t) ¡ (1 + ¿)e vin(t ¡ ¿) d¿ Z0 Transfer functions and convolution 8{12 Interpretation of convolution t y(t) = h(¿)u(t ¡ ¿) d¿ Z0 ² y(t) is current output; u(t ¡ ¿) is what the input was ¿ seconds ago ² h(¿) shows how much current output depends on what input was ¿ seconds ago for example, ² h(21) big means current output depends quite a bit on what input was, 21sec ago ² if h(¿) is small for ¿ > 3, then y(t) depends mostly on what the input has been over the last 3 seconds ² h(¿) ! 0 as ¿ ! 1 means y(t) depends less and less on remote past input Transfer functions and convolution 8{13 Graphical interpretation t y(t) = h(t ¡ ¿)u(¿) d¿ Z0 to ¯nd y(t): ² flip impulse response h(¿) backwards in time (yields h(¡¿)) ² drag to the right over t (yields h(t ¡ ¿)) ² multiply pointwise by u (yields u(¿)h(t ¡ ¿)) ² integrate over ¿ to get y(t) Transfer functions and convolution 8{14 h(¿) u(¿) h(¡¿) u(¿) ¿ ¿ h(t1 ¡ ¿) h(t2 ¡ ¿) PSfrag replacements ¿ ¿ t1 t2 h(t3 ¡ ¿) y = u ¤ h ¿ ¿ t3 Transfer functions and convolution 8{15 Example communication channel, e.g., twisted pair cable PSfrag replacements u y ¤h impulse response: 1.5 1 h 0.5 PSfrag replacements 0 0 2 4 6 8 10 t a delay ¼ 1, plus smoothing Transfer functions and convolution 8{16 simple signalling at 0:5 bit/sec; Boolean signal 0; 1; 0; 1; 1; : : : 1 u 0.5 0 0 2 4 6 8 10 t 1 PSfrag replacements y 0.5 0 0 2 4 6 8 10 t output is delayed, smoothed version of input 1's & 0's easily distinguished in y Transfer functions and convolution 8{17 simple signalling at 4 bit/sec; same Boolean signal 1 u 0.5 0 0 2 4 6 8 10 t 1 PSfrag replacements y 0.5 0 0 2 4 6 8 10 t smoothing makes 1's & 0's very hard to distinguish in y Transfer functions and convolution 8{18 Linear time-invariant systems consider a system A which is ² linear ² time-invariant (commutes with delays) ² causal (y(t) depends only on u(¿) for 0 · ¿ · t) called a linear time-invariant (LTI) causal system we have seen that any convolution system is LTI and causal; the converse is also true: any LTI causal system can be represented by a convolution system convolution/transfer function representation gives universal description for LTI causal systems (precise statement & proof is not simple . ) Transfer functions and convolution 8{19.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us