XII Subject: Mathematics Chapter (2): Inverse Trigonometric Functions Summary of the Chapter 1

XII Subject: Mathematics Chapter (2): Inverse Trigonometric Functions Summary of the Chapter 1

Class: XII Subject: Mathematics Chapter (2): Inverse Trigonometric Functions Summary of the Chapter 1. Inverse of a function f exists if the function is one-one and onto (bijective) function. Since trigonometric functions are many-one over their domains, we restrict their domains and co-domains to make them one-one and onto and then find their inverse. The domains and ranges(principal value branches) of inverse trigonometric functions are as follows: Functions Domain Range(Principal Value Branches) yx= sin−1 −1,1 − , 22 −1 yx= cos −1,1 0, −1 R yx= tan − , 22 yx= cot−1 R (0, ) −1 yx= sec R −−( 1,1) 0, − 2 y= cos ec−1 x R −−1,1 − ( ) ,0− 22 2. The smallest numerical value, either positive or negative, of θ is called the principal value of the function and it lies in the principal value branch. −1 −1 1 3. sin−1 x should not be confused with (sin x) . In fact, (sin x) = sin x 4. The graph of an inverse function can be obtained from the corresponding graph of original function as a mirror image (reflection) along the line yx= 5. For suitable values of domain, we have y=sin−1 x x = sin y 6. Properties of inverse trigonometric function sin−1 (sinxx ) = : x − , 22 cos−1 (cosxx ) = : x 0, −1 tan (tanxx ) = : x −, 22 cot−1 (cotxx ) = : x(0, ) −1 sec (secxx ) = : x −0, 2 cosec−1 (cos ec x ) = x : x −,0 − 22 7. sin(sin−1 xx ) = : x− 1,1 cos(cos−1 xx ) = : x− 1,1 tan(tan−1 xx ) = : xR cot(cot−1 xx ) = : xR sec(sec−1 xx ) = : xR −( −1,1) cosec (cos ec−1 ) = x : xR −( −1,1) 1 8. sin−−11= cosec x : x 1 cos−−11= sec x : x 1 tan−−11= cot x : x 0 x 1 tan−−11= − + cot x : x 0 x 9. sin−−11 (−xx ) = − sin ( ) : cos−−11 (−xx ) = − cos : tan−−11 (−xx ) = − tan : cot−−11 (−xx ) = − cot : sec−−11 (−xx ) = − sec : cosec−−11 (− x ) = − cos ec x : 10. sin−−11xx+= cos : 2 tan−−11xx+= cot : 2 sec−−11 x+= co sec x : 2 −1 − 1 − 1 xy+ 11. tanxy+= tan tan : xy 1 1− xy −1 − 1 − 1 xy− tanxy−= tan tan : xy −1 1+ xy 2x 1− x2 2 x 12. 2 tan−1x = sin − 1 = cos − 1 = tan − 1 1+x2 1 + x 2 1 − x 2 Day wise planning for the chapter: Day 1 Read the concepts in Textbook regarding inverse trigonometry and principle values. Day 2 Do the questions based on principal values from examples and ex: 2.1 Day 3 Memorise the formulae on inverse trigonometric functions Day 4 Exercise: 2.2 Day 5 Exercise: Miscellaneous Day 6 Miscellaneous Exercise and extra questions. Extra Questions: −111 − 1 − 1 1) Evaluate: tan− + cot + tan sin − (Ans: − ) 33 2 12 2 2) Evaluate: a) cos−1 ( cos(− 680 )) (Ans: ) 9 b) sin−1 ( sin(− 600 )) ( Ans: ) 3 −1 34 3 −1 4 3) Simplify: cos cosxx+ sin where − x . ( Ans: x − tan ) 55 44 3 4) Evaluate: tan2( sec−− 1 2) += cot 2( cosec 1 3) 11 −1 9 5) Evaluate : tan tan ( Ans: ) 8 8 1 6) Solve: sin−−11 6xx+ sin 6 3 = − ( Ans: − ) 2 12 1−−11a 1 a 2 b 7) Prove that tan+ cos + tan − cos = 4 2b 4 2 b a 1−1 3 4− 7 1−1 3 4+ 7 8) Prove that tan sin = and justify why the other value tan sin = is ignored. 2 4 3 2 4 3 −−113 9) Evaluate sin tan(− 3) + cos − 2 10) If cos−1x+ cos − 1 y + cos − 1 z = , prove that x2+ y 2 + z 2 +21 xyz = 2 −−11x +1 11) Prove the following: sin cot cos( tan x) = 2 x + 2 2a 1− b2 2 x ab− 12) If sin−1−= cos − 1 tan − 1 , then prove that x = 1+a2 1 + b 2 1 − x 2 1+ ab An useful Web links: https://youtu.be/LNe8rst2G4g .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us