PO18 Physical Optics 7 Polarization.Pdf

PO18 Physical Optics 7 Polarization.Pdf

Physical Optics Lecture 7: Polarization 2018-05-23 Herbert Gross www.iap.uni-jena.de 2 Physical Optics: Content No Date Subject Ref Detailed Content Complex fields, wave equation, k-vectors, interference, light propagation, 1 11.04. Wave optics G interferometry Slit, grating, diffraction integral, diffraction in optical systems, point spread 2 18.04. Diffraction G function, aberrations Plane wave expansion, resolution, image formation, transfer function, 3 25.04. Fourier optics G phase imaging Quality criteria and Rayleigh and Marechal criteria, Strehl ratio, coherence effects, two-point 4 02.05. G resolution resolution, criteria, contrast, axial resolution, CTF Energy, momentum, time-energy uncertainty, photon statistics, 5 09.05. Photon optics K fluorescence, Jablonski diagram, lifetime, quantum yield, FRET Temporal and spatial coherence, Young setup, propagation of coherence, 6 16.05. Coherence K speckle, OCT-principle Introduction, Jones formalism, Fresnel formulas, birefringence, 7 23.05. Polarization G components Atomic transitions, principle, resonators, modes, laser types, Q-switch, 8 30.05. Laser K pulses, power Basics of nonlinear optics, optical susceptibility, 2nd and 3rd order effects, 9 06.06. Nonlinear optics K CARS microscopy, 2 photon imaging Apodization, superresolution, extended depth of focus, particle trapping, 10 13.06. PSF engineering G confocal PSF Introduction, surface scattering in systems, volume scattering models, 11 20.06. Scattering L calculation schemes, tissue models, Mie Scattering 12 27.06. Gaussian beams G Basic description, propagation through optical systems, aberrations Laguerre-Gaussian beams, phase singularities, Bessel beams, Airy 13 04.07. Generalized beams G beams, applications in superresolution microscopy 14 11.07. Miscellaneous G Coatings, diffractive optics, fibers K = Kempe G = Gross L = Lu 3 Contents . Introduction . Fresnel formulas . Jones calculus . Further descriptions . Birefringence . Components . Applications 4 Scalar / vectorial Optics . Scalar: Helmholtz equation k 2 ko nE(r) 0 . Vectorial: Maxwell equations E k H D i j D E P 0 r k E B B H M k 0 r k D i k J k B 0 J E H 5 Basic Forms of Polarisation x 1. Linear components in phase E z E y x 2. circular E E phase difference of 90° between components z y x 3. elliptical E arbitrary but constant phase E difference z y 6 Basic Notations of Polarization . Description of electromagnetic fields: - Maxwell equations - vectorial nature of field strength . Decomposition of the field into components EAx costex Ay cos(t )ey . Propagation plane wave: - field vector rotates - projection components are oscillating sinusoidal y x z 7 Polarization Ellipse . Elimination of the time dependence: 2 2 E Ey 2Ex Ey cos 2 Ellipse of the vector E x sin A2 A2 A A . Different states of polarization: x y x y - sense of rotation - shape of ellipse 0° 45° 90° 135° 180° 225° 270° 315° 360° 8 Polarization Ellipse . Representation of the state of polarization by an ellipse . Field components Ex Ax (cos cos x sin sin x ) Ey Ay (cos cos y sin sin y ) y . Axes of ellipse: a, b y' Ax x' . Rotation angle of the field Ex 2Ax Ay tan 2 2 2 cos Ax Ay Ay E b y . Angle of eccentricity x b tan a a 9 Circular Polarization . Spiral curve of field vector . Superposition of left and right handed circular polarized light: resulting linear polarization y t2 t3 t1 El t E x t Er Ref: Manset 10 Circular polarized Light . Rotation of plane of polarization with t / z . Phase angle 90° . Generation by l/4 plate out of linear polarized light y El t1 SA z E b1 x E r LA b2 El TA Er E t2 l / 4 - plate y 45° linear polarizer x 11 Fresnel Formulas . Schematical illustration of the ray refraction ( reflection at an interface . The cases of s- and p-polarization must be distinguished a) s-polarization b) p-polarization B E r r reflection reflection transmission E r Br transmission E t B t i B i' t i i' E t normal to the i normal to the i interface interface n n' n n' E i B incidence i B incidence i interface E i interface 12 Fresnel Formulas . Electrical transverse polarization TE, s- or -polarization, E perpendicular to incidence plane . Magnetical transverse polarization TM, p- or p-polarization, E in incidence plane || E E . Boundary condition of Maxwell equations 1 1n 2 2n at a dielectric interface: continuous tangential component of E-field E1t E2t E Er . Amplitude coefficients for r r rTE TM reflected field E Ee e TE TM n Et transmitted field t r 1 tTM rTM 1 TE E TE n' e TE P 2 Pt ni' cos ' 2 . Reflectivity and transmission Rrr Tt P ncos i of light power Pe e 13 Fresnel Formulas . Coefficients of amplitude for reflected rays, s and p sin(i i') ncosi n'2 n2 sin 2 i ncosi n'cosi' k k r ez tz E 2 2 2 sin(i i') ncosi n' n sin i ncosi n'cosi' kez ktz tan(i i') n'2 cosi n n'2 n2 sin 2 i n'cosi ncosi' n'2 k n2 k r ez tz E|| 2 2 2 2 2 2 tan(i i') n' cosi n n' n sin i n'cosi ncosi' n' kez n ktz . Coefficients of amplitude for transmitted rays, s and p 2ncosi 2ncosi 2ncosi 2k t ez E 2 2 2 ncosi n'cosi' ncosi n' n sin i ncosi n'cosi' kez ktz 2ncosi 2n'ncosi 2ncosi 2n'2 k t ez E|| 2 2 2 2 2 2 n'cosi ncosi' n' cosi n n' n sin i n'cosi ncosi' n' kez n ktz 14 Fresnel Formulas . Typical behavior of the Fresnel amplitude coefficients as a function of the incidence angle for a fixed combination of refractive indices . i = 0 Transmission independent on polarization Reflected p-rays without phase jump t Reflected s-rays with phase jump of p t (corresponds to r<0) r . i = 90° No transmission possible Reflected light independent r on polarization . Brewster angle: completely s-polarized i reflected light Brewster 15 Fresnel Formulas: Energy vs. Intensity Fresnel formulas, different representations: 1. Amplitude coefficients, with sign 2. Intensity cefficients: no additivity due to area projection 3. Power coefficients: additivity due to energy preservation r , t R , T R , T 1 1 1 0.9 0.8 0.9 0.8 0.6 0.8 t T 0.4 0.7 0.7 t T 0.2 0.6 0.6 r T(In) 0 0.5 0.5 T(In) -0.2 0.4 0.4 0.3 -0.4 0.3 R r 0.2 0.2 -0.6 R(In) 0.1 0.1 -0.8 R(In) R 0 i 0 i -1 i 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 16 Jones Vector . Decomposition of the field strength E E A ei x E x x into two components in x/y or s/p 0 E i y y Aye . Relative phase angle between components y x 2 2 . Polarization ellipse E E E E x y 2 x y cos sin 2 Ax Ay Ax Ay . Linear polarized light 1 0 cos E E 0 E0 0 0 1 sin . Circular polarized light 1 1 1 1 Erz E i lz 2 2 i 17 Jones Calculus . Jones representation of full polarized field: E p J ss J sp Eop decomposition into 2 components E J E , o J J Es ps pp Eos . Cascading of system components: Product of matrices En J nJ n1 J 2 J 1 E1 E1 System 1 : E2 System 2 : E3 System 3 : E4 En-1 System n : En J1 J2 J3 Jn . In principle 3 types of components influencing polarization: 1. Change of amplitude polarizer, analyzer 1 t 0 J s trans 0 1 t p i e 2 0 2. Change of phase retarder J ret i 2 0 e cos sin 3. Rotation of field components rotator J rot () sin cos 18 Jones Matrices . Rotated component J () D()J (0)D() cos sin . Rotation matrix D() sin cos . Intensity * I2 E1 J JE1 . Three types of components to change the polarization: 1. amplitude: polarizer / analyzer 2. phase: retarder 3. orientation: rotator . Propagation: 2p i OPL 1 0 1. free space l J PRO e 0 1 t 0 r 0 J s J s 2. dielectric interface TRA REF 0 t p 0 rp 3. mirror 1 0 J SP r 0 1 19 Birefringence: Uniaxial Crystal . Birefringence: index of refraction depends on field orientation . Uniaxial crystal: ordinary index no perpendicular to crystal axis extra-ordinary index ne along crystal axis . Difference of indices n ne no ip n z e l 0 . Jones matrix J neo ip n z l 0 e sin22 cos eeii sin cos 1 J (,) neo ii22 sin cos ee 1 cos sin 2p z . Relative phase angle nn l eo 20 Descriptions of Polarization Parameter Properties 1 Ellipticity , Polarization ellipse only complete polarization orientation 2 Parameter Complex parameter only complete polarization 3 Jones vectors Components of E only complete polarization 4 Stokes vectors complete or partial Stokes parameter S ... S o 4 polarization 5 Poincare sphere Points on or inside the only graphical representation Poincare sphere 6 Coherence matrix 2x2 - matrix C complete or partial polarization 21 Stokes Vector . Description of polarization from the energetic point of view - So total intensity S0 I(0,0) I(90,0) 2 2 So Ex Ey - S1 Difference of intensity in x-y linear S1 I(0,0) I(90,0) 2 2 S1 Ex Ey - S2 Difference of intensity linear under 45° / 135° S2 I(45,0) I(135,0) S2 2Ex Ey cos - S Difference of circular components 3 S3 I(45,90) I(45,90) S3 2Ex Ey sin 22 Stokes Vector .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    59 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us