Ferromagnetic Luttinger Liquids And: an Exact Integral Equation for the Renormalized Fermi Surface Peter Kopietz

Ferromagnetic Luttinger Liquids And: an Exact Integral Equation for the Renormalized Fermi Surface Peter Kopietz

Ferromagnetic Luttinger liquids and: An exact integral equation for the renormalized Fermi surface Peter Kopietz Institut fur¨ Theoretische Physik, Universit¨at Frankfurt am Main Lorenz Bartosch, Marcus Kollar, and Peter Kopietz, Phys. Rev. B 67, 092403 (2003). Sascha Ledowski and Peter Kopietz, J.Phys.: Condens. Matter 15, 4779 (2003). 1/22 Introduction Can itinerant electrons in 1d form a ferromagnetic ground state? • Experiments and numerical studies indicate: • ferromagnetic ground state is possible in 1d! here: use perturbation theory and bosonization • to calculate correlation functions (spin correlations, single-particle Green function) Symmetry-broken Luttinger liquid (analogous to weak ferromagnets in 3d) • what happens to spin-waves in symmetry broken phase? • anomalous dimension close to quantum phase transition can be large! • 2/22 Lieb-Mattis theorem, (1962) There is no ferromagnetic ground state in a 1d conductor!? valid under fairly general conditions: spin and velocity independent forces • N p^2 H^ = + V (x^ ; : : : ; x^ ) • 2m∗ 1 N Xi=1 lattice model with nearest neighbor hopping • example: N=2: Helium atom (in any dimension) • E(S = 0) < E(S = 1) 3/22 Evidence for 1d itinerant ferromagnetism \0.7 structure" of quantum • point contacts has been linked to spontaneous ferromagnetism (Thomas et al., 1996) Extended Hubbard model can show 1d ferromagnetism (Daul and Noack, • PRB 1998) DFT calculation predicts band ferromagnetism for purely organic polymers • (Arita et al., PRL 2002). 4/22 Interacting electrons in 1d 1 Hamiltonian H^ = c^y c^ + [f ρ^ ( q)ρ^ (q) + f ρ^ ( q)ρ^ (q)] k kσ kσ 2L n n − n m n − n Xkσ Xq ρ^ (q) = c^y c^ (charge density) • n kσ kσ k+qσ P ρ^ (q) = σc^y c^ (spin density) • m kσ kσ k+qσ for weak Pferromagnets (m k /π): expand energy dispersion close to • F Fermi points: (k k )2 λ = + v (k k ) + − F + (k k )3 k kF F − F 2m∗ 6 − F cubic parameter λ will be necessary to stabilize ferromagnetic ground state • H^ is spin-rotationally invariant • 5/22 A first step: Hartree-Fock theory write Hamiltonian as H^ = H^0 + H^1 Hartree-Fock part: L H^ µN^ = ξ c^y c^ [f n2 + f m2] ; ξ = µ + σ∆ ; ∆ = f m 0 − kσ kσ kσ − 2 n m kσ k − − m Xkσ fluctuation part: 1 H^ = f δρ^ ( q)δρ^ (q) ; δρ^ (q) = ρ^ (q) δ ρ^ (0) 1 2L i i − i i i − q;0h i i Xq;i self-consistent determination of k"; k#; m; δn = n(m) n(0) at constant µ: − + f δn = σ∆ kσ − kF n δn = π−1(k + k 2k ) 9 k ; k ; δn; m " # F > " # −1 − = ) m = π (k" k#) − 6/22 ;> Change in ground-state energy at constant m Hartree Fock ground state energy Ω(m) = H^0 µN^ Landau expansion for weak ferromagnetismhπm− k i F Lv A Ω(m) Ω(0) = F I (I 1)(πm)2 + I4(πm)4 + : : : − 4π − 0 0 − 4 0 0 < I 0 < 1 m) δΩ( I 0 = 1 I 0 > 1 -m0 m m0 Stoner-parameter: I = 2f /πv 0 − m F quartic coefficient: A = 1 [λ 3λ2=(1 + F )] ; λ = (m∗v )−1 ; λ = λ/v 12 2 − 1 0 1 F 2 F non-trivial solution at πm = [2(I 1)=(I3A)]1=2 if I > 1. 0 0 − 0 0 7/22 Longitudinal spin fluctuations in RPA RPA for longitudinal spin- and charge susceptibilities (f = f = f > 0): n − m 0 χRPA(q; i!) = [χ0 + χ0 4f χ0 χ0 ]=D ; nn "" ## − 0 "" ## RPA 0 0 0 0 χmm (q; i!) = [χ"" + χ## + 4f0χ""χ##]=D ; where D(q; i!) = 1 4f 2χ0 χ0 and − 0 "" ## 0 1 f(ξk+q=2,σ0 ) f(ξk−q=2,σ) χσσ0 (q; i!) = − −L ξ 0 ξ i! Xk k+q=2,σ − k−q=2,σ − For small q and !: 2 0 vσ q χσσ(q; i!) 2 2 ≈ π (vσq) + ! 2 1 λ1 2 vσ=vF = 1 + σλ1∆=vF + λ2 (∆=vF ) + : : : 2 − 1 + F0 8/22 ballistic longitudinal spin fluctuations Wanted: correlation functions: 1 S (x; t) = [ ρ^ (x; t)ρ^ (0; 0) ρ^ (x; t) ρ^ (0; 0) ] i 2πV h i i i − h i ih i i −1 Fourier-transform: dynamic structure factor: Si(q; !) = π Imχii(q; ! + i0) Within RPA: longitudinal spin fluctuations propagate ballistically! SRPA(q; !) = Z q δ(! v q ) no Landau damping in 1d! • m mj j − mj j weight: Z = 1/πpδ 1 • m 0 velocity v = v pδ v • m F 0 F δ 2(I 1)=I 1 measures distance to zero temperature critical point • 0 ≡ 0 − 0 (quantum phase transition) susceptibility sum rule: 2 lim 1 d! SRPA(q; !) = χ • q!0 0 ! m m spin susceptibility: χ−1 = L−1 @2RΩ(m)=@m2 m m0 9/22 transverse suscrptibility: ladder approximation ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢£¤¥ ¦§ LAD LAD¡ ¡ ¡ ¡ ¡ 0 −1 −1 χ (q; i!) ¡ ¡ ¡ ¡ ¡ [χ (q; i!) 2f ] "# ¡ ¡ ¡ ¡ ¡ "# 0 ¡ ¡ ¡ ¡ ¡ ≡ ¡ ¡ ¡ ¡ ¡ − ¡ ¡ ¡ ¡ ¡ for small q and !: m i! χ0 (q; i!) 0 1 + Bq2 "# ≈ 2∆ 2∆ − −1 −1 k" 2 1 2 B = [4∆(k" k#)] [v" + v# ∆ dkv ] = [λ2 λ ] − − k# k 12 − 1 Spin-wave pole (Goldstone mode): R LAD m0 2 χ (q; i!) ; S"#(q; !) = m δ(! 2∆Bq ) "# ≈ −i! 2∆Bq2 0 − − However: Can perturbation theory be trusted? 10/22 ferromagnetic Luttinger liquid in ferromagnetic phase: marginal couplings: dominant forward scattering effective low-energy theory in symmetry broken phase ) Λ dq αy α 1 H^eff = αvσq ^ (q) ^ (q) + fijρ^i( q)ρ^j (q) Z 2π σ σ 2L − Xασ −Λ Xq;ij with renormalized couplings and densities Λ dq0 ^αy 0 ^α 0 ρ^n(q) = ασ −Λ 2π σ (q ) σ (q + q). P R need Wilsonian RG to arrive at this model • irrelevant couplings stablize ferromagnetism! calculate correlation functions using bosonization • closed loop theorem (Dzyaloshinskii, Larkin, 1974) : • all corrections beyond RPA for χmm(q; !) cancel! what happens to transverse spin waves in Luttinger liquid? • 11/22 Single particle Green function 2 ηn=2 2 ηm=2 1 r0 r0 Gσ(x; τ) = 2 2 2 2 2 2 2πi x + vnτ x + vmτ eiαkσx × [αx + iv τ]1=2[αx + iv τ]1=2 Xα n m Luttinger liquid behavior • anomalous dimensions η = 1 (K + K−1 2) • i 4 i i − with K = [I + 1]−1=2 and K = [2(I 1)]−1=2 n m − η diverges for I 1 • m ! Luttinger liquid relation: K = πv χ =2 • m m m at quantum phase transition: χ and v 0 m ! 1 m ! 12/22 13/22 ¦§ ¢£¤¥ osonization b 2 x ] ) τ # k m − iv " k + ( iα αx e [ from α symmetry y ersion P en m m η η disp 2 rok 2 b i 2 # τ to k 2 m 2 0 v onent r energy − + 2 due " x exp k is h ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ rized 2 ≈ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ) 1 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ q π ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ − susceptibilit ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ r (2 BOS linea scaling fo contribution a = d o rge on ≡ go contribution ) cha τ x; no spin anomalous based only ( • • • • • BOS "# ransverse χ T Low energy spin excitations BOS S (q; !) = C Θ(! v q k" + k# ) "# m − mjj j − j 2ηm−1 [! v ( q k" + k#)] × − m j j − 2ηm+1 [! + v ( q k" + k#)] × m j j − −1 4ηm with Cm = [4πvmΓ(2ηm)Γ(2 + 2ηm)] (r0=vm) ¡£¢ ¤ 1d Stoner ¢ • continuum ¢ no Landau ¦ © • damping ¦ © ¥§¦ ¥§© ¤ ¤ ¨ ¢ 14/22 Conclusions and outlook: Effective low-energy theory of weak ferromagnetic Luttinger liquids • Stoner parameter δ 2(I 1) measures distance to quantum critical point • ≈ − longitudinal susceptibility: SRPA(q; !) = Z q δ(! v q ) • m mj j − mj j v δ1=2, Z δ−1=2 χ Z =v δ−1 m / m / ) m / m m / Luttinger liquid relation χ = 2K /πv • m m m anomalous dimension: η = 1 (K + K−1 2) at quantum ) m 4 m m − ! 1 phase transition! Open problems: study ferromagnetic instability beyond Hartree-Fock theory • (numerics, Onsager correction) use Wilsonian renormalization group to study instability: • how do irrelevant operators (band curvature) stabilize ferromagnetism? formulation of problem as self-consistent determination of the Fermi • surface at the RG fixed point. 15/22 Beyond Hartree-Fock: functional RG Strategy: determine Fermi-surface (i.e. k"; k#) self-consistently as fixed point of renormalization group! RG for fermions: 1d: g-ology [Solyom, 1979] • one-loop, using naive momentum-shell [Shankar (1994)] • functional RG, one-loop, using Polchinski equation: [Zanchi, Schulz • (1996); Salmhofer, Honerkamp (1998); Halboth, Metzner (1999)] using irreducible vertices [Honerkamp, Salmhofer (2001); P.K., Busche • (2001)] What is the problem with Fermions? Propagator singular on entire surface in k-space: Zk G(k; !) F ≈ ! v (k k ) iδ − F · − F 16/22 Fermi surface = RG fixed point Nozi`eres, 1964: • \In practice, we shall never try to calculate the Fermi surface, which is much too difficult. What is more important to us is to know that it exists." Here: need renormalized Fermi surface k ; k . • " # Strategy (S. Ledowski, P.K., J.Phys. Condens.Matter, 2003): • Requirement that RG flow approaches fixed point yields self-consistency condition for the renormalized Fermi surface! Implementation via functional RG for irreducible vertices • exact flow equation of two-point vertex Γ(2)(K; K) = [Σ (K) Σ(k ; i0)] Λ − Λ − F (2) δ( k0 kF Λ) (4) 0 0 @ΛΓΛ (K; K) = j − j − 0 ΓΛ (K; K ; K ; K) Z 0 i! 0 k0 + µ Σ (K ) K n − − Λ 17/22 Flow of four- and six-point vertices 1 1 1 1 1 1 4 6 4 4 2 2 2 2 2 2 BCS 1 1 1 1 4 4 4 4 2 2 ZS 2 2 2 1 2 1 4 4 4 4 2 1 ZS 2 1 1 1 1 1 1 1 2 6 2 2 8 2 3 2 6 2 4 3 3 3 3 3 3 1 1 1 1 1 1 2 6 2 2 6 2 3 4 2 6 2 9 3 3 4 4 3 3 3 3 1 1 1 1 4 4 2 2 2 2 4 4 4 4 9 3 3 3 3 1 1 1 1 4 4 2 2 2 3 4 4 3 3 36 4 4 2 3 18/22 Scaling toward the Fermi surface Field rescaling consider RG flow of renormalized vertices: () ~(2n) 0 0 Γl (Q1; : : : ; Qn; Qn; : : : ; Q1) = n0 n0 1=2 n−1 n−2 ^1 ^n n^n n^1 (2n) 0 0 ν0 Λ Zl Zl Zl Zl ΓΛ (K1; : : : ; Kn; Kn; : : : ; K1) : · · · · · · label momenta by unit vector n^ and distance p from Fermi surface: k = kF + v^F p v p scaling variables: Q = (n^; pξ; i!τ) k F kF length: ξ = vF =Λ ; time: τ = 1=Λ n infrared cutoff Λ (units of energy) The renormalized vertices can be viewed as dimensionless dynamic scaling functions! ~(2) example: 2-point vertex Γl (Q; Q) = Φl(n^; pξ; !τ) 19/22 flow equation for FS shift Zn^ rescaled two-point vertex Γ~(2)(Q) = l [Σ (K) Σ(k ; i0)] satisfies l − Λ Λ − F ~(2) n^ ~(2) _ 0 ~(4) 0 0 @lΓl (Q) = (1 ηl q@q ∂)Γl (Q) Gl(Q )Γl (Q; Q ; Q ; Q) − − − − ZQ0 relevant couplings µ~n^ Γ~(2)(σ; n^; q = 0; i = i0) = Γ~(2)(Q ) satisfy l ≡ l l 0 n n n @ µ~^ = (1 η^ )µ~^ + Γ_ (2)(n^) l l − l l l (2) 0 (4) 0 0 with Γ_ (n^) = 0 G_ (Q )Γ~ (Q ; Q ; Q ; Q ).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us