The Proton Radius Puzzle

The Proton Radius Puzzle

=================================================== The proton radius puzzle Measure the 2S − 2P splitting in µp ↓ determine the proton rms radius rp (10× better ) But large discrepancy observed: • 4σ from H spectroscopy value • 6σ from e-proton scattering value A. Antognini MPQ, Garching, Germany ETH, Zurich, Switzerland A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1 ================ The good, the bad and the ugly Who is the bad? - Muonic hydrogen - Hydrogen ? - Scattering Discrepancy → active discussion: • H and µp energy levels - bound-state QED theory - effective field theories - spectroscopy measurements, R∞ • Scattering measurements and analysis • Proton structure • New physics A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.2 Aim of the µp Lamb shift experiment (before we dit it!) 8.4 meV • Measure the 2S − 2P energy difference (Lamb shift) in µp F=2 2P3/2 F=1 2 3 2P1/2 F=1 ∆E(2S − 2P ) = 209.9779(49) − 5.2262 rp + 0.0347 rp meV F=0 with 30 ppm precision. 206 meV 50 THz µ 2 −3 6 m • Extract rp ≡ rp with ur ≈ 10 (rel. accuracy) → bound-stateq QED test in hydrogen −7 to a level of ur ≈ 3 × 10 (10× better) 1 ∞ 2 2 → improve Rydberg constant (cR = 2 α mec /h) −12 to a level of ur ≈ 1 × 10 (6× better) fin. size: 3.8 meV → benchmark for lattice QCD calculations F=1 2S1/2 23 meV → confront with electron scattering results F=0 A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.3 Finite size effect (in leading order) −ieγµ F (q2) gµν 1 2 → 2 −i 2 q q Potential q rp −ieF (q2)γν 2 3 2 rp ≡ d r ρ(r)r R 2 2 3 −iq·r q 2 R (fm) F (q )= d r ρ(r)e ≃ Z(1 − 6 rp + ··· ) Maxwell equation: R ∇E = 4πρ Zα ∆V (r)= V (r) − − r Zα r 2 − 3 − ( ) (r < rp) 4πZα “ ” 2π(Zα) 2rp rp q q 2 V = ∆V ( )= q2 (1 − F ( )) ≃ 3 rp 8 Zα “ ” − r (r > rp) < 2π(Zα) 2 ∆V (r)= 3 rp δ(r) : Ze2 r 2rp − 3 − ( )2 − 2π(Zα) 2rp rp r FS 2 2 ∆V = ∆E = 3 rp |Ψn(0)| 8 0 “ ” 4 < 2(Zα) 3 2 FS = 3 mr rp δl0 ∆E := hΨ¯ |∆V |Ψi 3n A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.4 Principle of µp(2S-2P) experiment − • special low-energy µ beam-line at PSI (unpulsed!) 8.4 meV 2P F=2 − 3/2 F=1 2P1/2 F=1 • µ detected in-flight → trigger of laser system F=0 − • µ p atoms formed in 1 mbar H2 gas 206 meV • laser pulse excites the 2S-2P transition (λ ≈ 6 µm) 50 THz • delayed 2P-1S X-ray detected: signature 6 µm “prompt” (t ∼ 0) “delayed” (t ∼ 1 µs) n~14 2 P 2S-vac.pol. Laser 1 % 99 % = -206meV 2 S proton 2 P fin. size: 3.8 meV 2 S γ F=1 2 keV γ 2 keV 2S1/2 23 meV F=0 linewidth = Γ =18.6GHz 1 S 2P 1 S → 6 transitions separated ! 1% with τ2S = 1 µs normalize delayed/prompt [R. Pohl ..., PRL 97,193402 (2006)] A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.5 The resonance: discrepancy, sys., stat. Discrepancy: −3 5.0 σ ↔∼ 75 GHz ↔ δν/ν = 1.5 × 10 Waterline known with 1 MHz accuracy ] -4 7 CODATA-06 our value 6 e-p scattering H2O 5 calib. Fitted position: 700 MHz unc. 4 → rp delayed / prompt events [10 3 Fitted width 2 as predicted 1 0 49.75 49.8 49.85 49.9 49.95 laser frequency [THz] Systematics: 300 MHz Laser frequency known with 300 MHz uncertainty Statistics: 700 MHz A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.6 Proton radius from µp Lamb shift F =1 F =2 Measured µp resonance: ν(2S1/2 − 2P3/2 ) = 49881.88(76) GHz (15 ppm!) • Comparing measurement with theoretical prediction −→ r.m.s. proton radius: ∆Eexp. = 206.2949(32) meV ⇒ rp = 0.84184(67) fm ∆Eth. = 209.9779(49) − 5.2262 r2 + 0.0347 r3 meV ) p p exp −4 ur = 4.3 × 10 R. Pohl et al., Nature 466, 213 (2010) th −4 ur = 6.7 × 10 A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.7 Proton radius from µp Lamb shift F =1 F =2 Measured µp resonance: ν(2S1/2 − 2P3/2 ) = 49881.88(76) GHz (15 ppm!) • Comparing measurement with theoretical prediction −→ r.m.s. proton radius: ∆Eexp. = 206.2949(32) meV ⇒ rp = 0.84184(67) fm ∆Eth. = 209.9779(49) − 5.2262 r2 + 0.0347 r3 meV ) p p exp −4 ur = 4.3 × 10 R. Pohl et al., Nature 466, 213 (2010) th −4 ur = 6.7 × 10 . • But big discrepancy (75 GHz = 0.31 meV in ∆E): µp: rp = 0.842 ± 0.001 fm Discrepancy of rp(µp): H-spectroscopy: rp = 0.876 ± 0.008 fm • 4.3 σ from H from e-p scatt. e-p scattering: rp = 0.897 ± 0.018 fm [Sick 2005] • 3.1 σ CODATA-2006: rp = 0.877 ± 0.007 fm • 5.0 σ from CODATA • rp 4% smaller A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.7 Proton radius from µp Lamb shift F =1 F =2 Measured µp resonance: ν(2S1/2 − 2P3/2 ) = 49881.88(76) GHz (15 ppm!) • Comparing measurement with theoretical prediction −→ r.m.s. proton radius: ∆Eexp. = 206.2949(32) meV ⇒ rp = 0.84184(67) fm ∆Eth. = 209.9779(49) − 5.2262 r2 + 0.0347 r3 meV ) p p exp −4 ur = 4.3 × 10 R. Pohl et al., Nature 466, 213 (2010) th −4 ur = 6.7 × 10 . • But big discrepancy (75 GHz = 0.31 meV in ∆E): µp: rp = 0.842 ± 0.001 fm Discrepancy of rp(µp): H-spectroscopy: rp = 0.876 ± 0.008 fm • 4.3 σ from H from e-p scatt. e-p scattering: rp = 0.897 ± 0.018 fm [Sick 2005] • 3.1 σ CODATA-2006: rp = 0.877 ± 0.007 fm • 5.0 σ from CODATA new: • rp 4% smaller e-p, Mainz 2010: r = 0.879 ± 0.008 fm p • 6.5 σ from e-p scatt. e-p, JLab 2011: rp = 0.875 ± 0.010 fm A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.7 Proton radius puzzle: What may be wrong? 75 GHz Discrepancy: ∆Eth.(rCODATA) − ∆Eexp. = 0.31 meV µp p µp 0.15 % (1) µp exp. wrong ? but • good statistics (σ = 0.76 GHz ≪ discrepancy) • linewidth ∼ 19 GHz ≪ discrepancy (2) µp theory wrong? but • several methods for frequency calibration • mainly pure QED (vac.pol., etc.) • another µp(2S-2P) measured! • ’huge’ relative discrepancy • hadronic terms small (3) H spectroscopy wrong ? but • pol.term = 0.015(4)meV • 2S-8S, 2S-8D, 2S-12S, etc. all consistent ... • weak interactions very small (4) H theory wrong? but • uncertainties at leat 25× smaller than discrepancy ... (5) e-p scattering wrong? but • new Mainz and JLab results ... A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.8 rp puzzle (1): Is the µp experiment wrong ? th exp ∆E-discrepancy = 75 GHz ↔ ur = 1.5% ↔ 4Γ and Γ =Γ • Laser frequency calibration Two consistent ways (→ σ =0.3 GHz): (i) at 6 µm with H2O lines (20 measurements of 5 different lines) (ii) at 708 nm with λ-meter, wavemeter, and FP (calibrated to I2, Rb, Cs lines) Statistical uncertainty= 700 MHz, Systematic uncertainty= 300 MHz. • Systematic uncertainties: -laserfrequencycalibration 0.300GHz - Zeeman effect (B = 5 Tesla) 0.030 GHz Systematics ∼ 1/m - AC-Stark, DC-Stark shift < 0.001 GHz -Dopplershift <0.001GHz Finite size ∼ m3 - pressure shift (1 mbar) 0.001 GHz - molecules, ions (ppµ)∗, (µp)e− < 0.001 GHz (τppµ ∼ps → no population left for laser experiment!) No broadening observed! A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.9 rp puzzle (1): Is the µp experiment wrong ? th exp ∆E-discrepancy = 75 GHz ↔ ur = 1.5% ↔ 4Γ and Γ =Γ • Pressure shift ? - pressure shift of H(1S-2S) in H2 gas: ∼10 MHz/mbar - µp is me/mµ smaller (stronger E-fields): - less disturbed by external fields - smaller mixing of states Detailed calculations give a pressure shift of ∼1 MHz at 1 mbar ∗ − • Spectroscopy of (ppµ) -molecules, or (µp2S)e -ions, instead of µp ? + ∗ ∗ (a) µp(2S) + H2 → {[(ppµ) ] pee} → µp(1S)+ ... [PRL 97, 193402 (2006)] + ∗ ∗ [(ppµ) ] pee} is formed but τppµ . 1 ps [PRA 70, 042506 (2004)] ∗ (b) µp + H2 → (µp2S)e + ··· − The e in (µp2S)e leads to ∆E ∼ 0.4 meV if re = a0 [EJPD 61, 7 (2011)] Loosly bound system: “each” collision ionizes it. Internal and external Auger No population left for laser experiment! No broadening or double-line observed! A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.9 rp puzzle (2): Is µp(2S-2P) theory wrong ? # Contribution Value Unc. 3 Relativistic one loop VP 205.0282 Vac.pol. + 4 NR two-loop electron VP 1.5081 e− e 5 Polarization insertion in two Coulomb lines 0.1509 6 NR three-loop electron VP 0.00529 7 Polarisation insertion in two and three Coulomb lines (corrected) 0.00223 8 Three-loop VP (total, uncorrected) 9 Wichmann-Kroll −0.00103 10 Light by light electron loop ((Virtual Delbrück) 0.00135 0.00135 11 Radiative photon and electron polarization in the Coulomb line α2(Zα)4 −0.00500 0.0010 12 Electron loop in the radiative photon of order α2(Zα)4 −0.00150 13 Mixed electron and muon loops 0.00007 4 14 Hadronic polarization α(Zα) mr 0.01077 0.00038 5 Hadron 15 Hadronic polarization α(Zα) mr 0.000047 2 4 16 Hadronic polarization in the radiative photon α (Zα) mr −0.000015 17 Recoil contribution 0.05750 18 Recoil finite size Recoil 0.01300 0.001 19 Recoil correction to VP −0.00410 n k 20 Radiative corrections of order α (Zα) mr −0.66770 µ+ µ− 21 Muon Lamb shift 4th order −0.00169 5 m − 22 Recoil corrections of order α(Zα) M mr 0.04497 6 23 Recoil of order α 0.00030 − + µ+ µ e e − n m e + e − Hadrons − + − 24 Radiative recoil corrections of order α(Zα) mr 0.00960 e e + − M e e 25 Nuclear structure correction of order (Zα)5 (Proton polarizability) 0.015 0.004 5 26 Polarization operator induced correction to nuclear polarizability α(Zα) mr 0.00019 e+ 5 e − 27 Radiative photon induced correction to nuclear polarizability α(Zα) mr −0.00001 + e e − Sum 206.0573 0.0045 A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us