2017 Timo Koski Department of Math

2017 Timo Koski Department of Math

Lecture Notes: Probability and Random Processes at KTH for sf2940 Probability Theory Edition: 2017 Timo Koski Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden 2 Contents Foreword 9 1 Probability Spaces and Random Variables 11 1.1 Introduction...................................... .......... 11 1.2 Terminology and Notations in Elementary Set Theory . .............. 11 1.3 AlgebrasofSets.................................... .......... 14 1.4 ProbabilitySpace.................................... ......... 19 1.4.1 Probability Measures . ...... 19 1.4.2 Continuity from below and Continuity from above . .......... 21 1.4.3 Why Do We Need Sigma-Fields? . .... 23 1.4.4 P - Negligible Events and P -AlmostSureProperties . 25 1.5 Random Variables and Distribution Functions . ............ 25 1.5.1 Randomness?..................................... ...... 25 1.5.2 Random Variables and Sigma Fields Generated by Random Variables ........... 26 1.5.3 Distribution Functions . ...... 28 1.6 Independence of Random Variables and Sigma Fields, I.I.D. r.v.’s . ............... 29 1.7 TheBorel-CantelliLemmas ............................. .......... 30 1.8 ExpectedValueofaRandomVariable . ........... 32 1.8.1 A First Definition and Some Developments . ........ 32 1.8.2 TheGeneralDefinition............................... ....... 34 1.8.3 The Law of the Unconscious Statistician . ......... 34 1.8.4 Three Inequalities for Expectations . ........... 35 1.8.5 Limits and Integrals . ...... 37 1.9 Appendix: lim sup xn and lim inf xn .................................. 37 1.9.1 Sequencesofrealnumbers . .. .. .. .. .. .. .. .. .. .. .. ......... 37 1.9.2 lim sup xn ............................................ 38 1.9.3 lim inf xn ............................................. 38 1.9.4 Properties, The Limit of a Sequence . ......... 38 1.10 Appendix: lim sup An and lim inf An .................................. 39 1.11 Appendix: Combinatorics of Counting and Statistics of Particles in Cells . 40 1.12Exercises ........................................ ......... 42 1.12.1 Easy Drills . .... 42 1.12.2 Measures, Algebras and Sigma Fields . ......... 42 1.12.3 Random Variables and Expectation . ......... 44 3 4 CONTENTS 2 Probability Distributions 47 2.1 Introduction...................................... .......... 47 2.2 Continuous Distributions . .......... 49 2.2.1 Univariate Continuous Distributions . ......... 49 2.2.2 Continuous Bivariate Distributions . ......... 57 2.2.3 Mean, Variance and Covariance of Linear Combinations of R.V.s . ............ 59 2.3 Discrete Distributions . .......... 59 2.3.1 Univariate........................................ ..... 59 2.3.2 Bivariate Discrete Distributions . ......... 64 2.4 Transformations of Continuous Distributions . ............... 65 2.4.1 The Probability Density of a Function of Random Variable . .......... 65 2.4.2 Change of Variable in a Joint Probability Density . ........ 67 2.5 Appendix: Decompositions of Probability Measures on the Real Line ............... 71 2.5.1 Introduction ..................................... ...... 71 2.5.2 Decompositions of µ on (R, ) ................................. 72 B 2.5.3 Continuous, Discrete and Singular Random Variables . ........... 74 2.6 Exercises ......................................... ........ 75 2.6.1 Distribution Functions . ...... 75 2.6.2 Univariate Probability Density Functions . ......... 76 2.6.3 Multivariate P.d.f.’s . .... 81 2.6.4 ExpectationsandVariances . ......... 87 2.6.5 Additional Exercises . ....... 88 3 Conditional Probability and Expectation w.r.t. a Sigma Field 91 3.1 Introduction...................................... .......... 91 3.2 Conditional Probability Densities and Conditional Expectations . ................. 91 3.3 Conditioning w.r.t. an Event . ......... 94 3.4 Conditioning w.r.t. a Partition . ......... 95 3.5 Conditioning w.r.t. a Random Variable . ......... 96 3.6 A Case with an Explicit Rule for Conditional Expectation . ............ 97 3.7 Conditioning w.r.t. a σ -Field ..................................... 98 3.7.1 Properties of Conditional Expectation . .......... 99 3.7.2 An Application of the Properties of Conditional Expectation w.r.t. a σ-Field . 101 3.7.3 EstimationTheory.................................. ......102 3.7.4 TowerPropertyandEstimationTheory . ..........103 3.7.5 Jensen’s Inequality for Conditional Expectation . ............103 3.8 Exercises ......................................... ........104 3.8.1 Easy Drills . 104 3.8.2 Conditional Probability . ......104 3.8.3 Joint Distributions & Conditional Expectations . ..........106 3.8.4 Miscellaneous . .109 3.8.5 Martingales....................................... .112 CONTENTS 5 4 Characteristic Functions 117 4.1 OnTransformsofFunctions . .. .. .. .. .. .. .. .. .. .. .. ...........117 4.2 Characteristic Functions: Definition and Examples . ...............119 4.2.1 Definition and Necessary Properties of Characteristic Functions ..............119 4.2.2 Examples of Characteristic Functions . ..........122 4.3 Characteristic Functions and Moments of Random Variables . ................127 4.4 Characteristic Functions of Sums of Independent Random Variables ................128 4.5 Expansions of Characteristic Functions . ...............131 4.5.1 ExpansionsandErrorBounds . ........131 4.5.2 A Scaled Sum of Standardised Random Variables (Central Limit Theorem) . .132 4.6 AnAppendix:ALimit ................................... ......133 4.6.1 A Sequence of Numbers with the Limit ex ..........................133 4.6.2 Some Auxiliary Inequalities . ......134 4.6.3 Applications . 135 4.7 Exercises ......................................... ........136 4.7.1 Additional Examples of Characteristic Functions . ............136 4.7.2 Selected ExamQuestionsfrom the PastDecades . ............137 4.7.3 Various Applications of the Characteristic Function . ............138 4.7.4 Mellin Transform in Probability . .139 5 Generating Functions in Probability 143 5.1 Introduction...................................... ..........143 5.2 Probability Generating Functions . ...........143 5.3 Moments and Probability Generating Functions . .............147 5.4 Probability Generating Functions for Sums of Independent RandomVariables . .148 5.5 Sums of a Random Number of Independent Random Variables . ...............149 5.6 TheProbabilityofanEvenNumberofSuccesses . ..............151 5.7 MomentGeneratingFunctions . ...........154 5.7.1 Definition and First Properties . ........154 5.7.2 M.g.f. is really an Exponential Moment Generating Function, E.m.g.f ! ..........157 5.8 Exercises ......................................... ........158 5.8.1 Probability Generating Functions . ........158 5.8.2 MomentGeneratingFunctions . ........159 5.8.3 Sums of a Random Number of Independent Random Variables . ............161 5.8.4 Various Additional Generating Functions in Probability . ...........163 5.8.5 TheChernoffInequality .............................. .......164 6 Convergence of Sequences of Random Variables 165 6.1 Introduction...................................... ..........165 6.2 Definitions of Modes of Convergence, Uniqueness of the Limit . ................167 6.3 RelationsbetweenConvergences . .............169 6.4 SomeRulesofComputation ............................. .........172 6.5 AsymptoticMomentsandPropagationofError . ..............174 6.6 ConvergencebyTransforms . .............177 6.6.1 Theorems on Convergence by Characteristic Functions . ...............177 6.6.2 ConvergenceandGeneratingFunctions . ...........179 6 CONTENTS 6.6.3 CentralLimitTheorem ............................... ......179 6.7 AlmostSureConvergence ............................. ...........180 6.7.1 Definition......................................... 180 6.7.2 Almost Sure Convergence Implies Convergence in Probability . .............180 6.7.3 A Summary of the General Implications between Convergence Concepts and One Special Implication ........................................... 181 6.7.4 TheStrongLawofLargeNumbers . .........182 6.8 Exercises ......................................... ........183 6.8.1 Convergence in Distribution . ........183 6.8.2 CentralLimitTheorem ............................... ......187 6.8.3 Convergence in Probability . ......188 6.8.4 ProofofTheorem6.7.2 ............................... ......190 6.8.5 Almost Sure Convergence, The Interrelationship Between Almost Sure Convergence and Mean Square Convergence, Criteria for Almost Sure Convergence ..............190 7 Convergence in Mean Square and a Hilbert Space 193 7.1 Convergence in Mean Square; Basic Points of View . .............193 7.1.1 Definition......................................... 193 7.1.2 The Hilbert Space L (Ω, , P).................................193 2 F 7.2 Cauchy-Schwartz and Triangle Inequalities . ..............194 7.3 PropertiesofMeanSquareConvergence . ...............194 7.4 Applications........................................ ........196 7.4.1 MeanErgodicTheorem ............................... ......196 7.4.2 MeanSquareConvergenceofSums . ..........196 7.4.3 Mean Square Convergence of Normal Random Variables . .............197 7.5 Subspaces, Orthogonality and Projections in L (Ω, , P)......................198 2 F 7.6 Exercises ......................................... ........201 7.6.1 MeanSquareConvergence . .. .. .. .. .. .. .. .. .. .. .. ........201 7.6.2 Optimal Estimation as Projection on Closed Linear Subspaces in L (Ω, , P) ......201 2 F 8 Gaussian Vectors 205 8.1 Multivariate Gaussian Distribution . ..........205

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    346 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us