The Schottky Problem

The Schottky Problem

The Schottky Problem Samuel Grushevsky Princeton University Schottky problem is the following question: Which principally polarized abelian varieties are Jacobians of curves? Mg moduli space of curves C of genus g Ag moduli space of g-dimensional abelian varieties (A; Θ) (complex principally polarized) Jac : Mg ,!Ag Torelli map Jg := Jac(Mg ) locus of Jacobians (Recall that A is a projective variety with a group structure; Θ is an ample divisor on A with h0(A; Θ) = 1; Jac(C) = Picg−1(C) ' Pic0(C)) Schottky problem. Describe/characterize Jg ⊂ Ag . What is the Schottky problem? Mg moduli space of curves C of genus g Ag moduli space of g-dimensional abelian varieties (A; Θ) (complex principally polarized) Jac : Mg ,!Ag Torelli map Jg := Jac(Mg ) locus of Jacobians (Recall that A is a projective variety with a group structure; Θ is an ample divisor on A with h0(A; Θ) = 1; Jac(C) = Picg−1(C) ' Pic0(C)) Schottky problem. Describe/characterize Jg ⊂ Ag . What is the Schottky problem? Schottky problem is the following question: Which principally polarized abelian varieties are Jacobians of curves? Mg moduli space of curves C of genus g Ag moduli space of g-dimensional abelian varieties (A; Θ) (complex principally polarized) Jac : Mg ,!Ag Torelli map Jg := Jac(Mg ) locus of Jacobians (Recall that A is a projective variety with a group structure; Θ is an ample divisor on A with h0(A; Θ) = 1; Jac(C) = Picg−1(C) ' Pic0(C)) Schottky problem. Describe/characterize Jg ⊂ Ag . What is the Schottky problem? Schottky problem is the following question (over C): Which principally polarized abelian varieties are Jacobians of curves? (Recall that A is a projective variety with a group structure; Θ is an ample divisor on A with h0(A; Θ) = 1; Jac(C) = Picg−1(C) ' Pic0(C)) Schottky problem. Describe/characterize Jg ⊂ Ag . What is the Schottky problem? Schottky problem is the following question (over C): Which principally polarized abelian varieties are Jacobians of curves? Mg moduli space of curves C of genus g Ag moduli space of g-dimensional abelian varieties (A; Θ) (complex principally polarized) Jac : Mg ,!Ag Torelli map Jg := Jac(Mg ) locus of Jacobians Schottky problem. Describe/characterize Jg ⊂ Ag . What is the Schottky problem? Schottky problem is the following question (over C): Which principally polarized abelian varieties are Jacobians of curves? Mg moduli space of curves C of genus g Ag moduli space of g-dimensional abelian varieties (A; Θ) (complex principally polarized) Jac : Mg ,!Ag Torelli map Jg := Jac(Mg ) locus of Jacobians (Recall that A is a projective variety with a group structure; Θ is an ample divisor on A with h0(A; Θ) = 1; Jac(C) = Picg−1(C) ' Pic0(C)) What is the Schottky problem? Schottky problem is the following question (over C): Which principally polarized abelian varieties are Jacobians of curves? Mg moduli space of curves C of genus g Ag moduli space of g-dimensional abelian varieties (A; Θ) (complex principally polarized) Jac : Mg ,!Ag Torelli map Jg := Jac(Mg ) locus of Jacobians (Recall that A is a projective variety with a group structure; Θ is an ample divisor on A with h0(A; Θ) = 1; Jac(C) = Picg−1(C) ' Pic0(C)) Schottky problem. Describe/characterize Jg ⊂ Ag . Coleman's conjecture For g sufficiently large there are finitely many curves of genus g such that their Jacobians have complex multiplication. Stronger conjecture (+ Andre-Oort =) Coleman). There do not exist any complex geodesics for the natural metric on Ag that are contained in Jg (and intersect Jg ). [Work on this by M¨oller-Viehweg-Zuo;Hain, Toledo...] Relates two important moduli spaces. Lots of beautiful geometry arises in this study. A \good" answer could help relate the geometry of Mg and Ag . Could have applications to problems about curves easily stated in terms of the Jacobian: (Super)string scattering amplitudes [D'Hoker-Phong], . Why might we care about the Schottky problem? Coleman's conjecture For g sufficiently large there are finitely many curves of genus g such that their Jacobians have complex multiplication. Stronger conjecture (+ Andre-Oort =) Coleman). There do not exist any complex geodesics for the natural metric on Ag that are contained in Jg (and intersect Jg ). [Work on this by M¨oller-Viehweg-Zuo;Hain, Toledo...] Could have applications to problems about curves easily stated in terms of the Jacobian: (Super)string scattering amplitudes [D'Hoker-Phong], . Why might we care about the Schottky problem? Relates two important moduli spaces. Lots of beautiful geometry arises in this study. A \good" answer could help relate the geometry of Mg and Ag . Coleman's conjecture For g sufficiently large there are finitely many curves of genus g such that their Jacobians have complex multiplication. Stronger conjecture (+ Andre-Oort =) Coleman). There do not exist any complex geodesics for the natural metric on Ag that are contained in Jg (and intersect Jg ). [Work on this by M¨oller-Viehweg-Zuo;Hain, Toledo...] (Super)string scattering amplitudes [D'Hoker-Phong], . Why might we care about the Schottky problem? Relates two important moduli spaces. Lots of beautiful geometry arises in this study. A \good" answer could help relate the geometry of Mg and Ag . Could have applications to problems about curves easily stated in terms of the Jacobian: Stronger conjecture (+ Andre-Oort =) Coleman). There do not exist any complex geodesics for the natural metric on Ag that are contained in Jg (and intersect Jg ). [Work on this by M¨oller-Viehweg-Zuo;Hain, Toledo...] (Super)string scattering amplitudes [D'Hoker-Phong], . Why might we care about the Schottky problem? Relates two important moduli spaces. Lots of beautiful geometry arises in this study. A \good" answer could help relate the geometry of Mg and Ag . Could have applications to problems about curves easily stated in terms of the Jacobian: Coleman's conjecture For g sufficiently large there are finitely many curves of genus g such that their Jacobians have complex multiplication. (Super)string scattering amplitudes [D'Hoker-Phong], . Why might we care about the Schottky problem? Relates two important moduli spaces. Lots of beautiful geometry arises in this study. A \good" answer could help relate the geometry of Mg and Ag . Could have applications to problems about curves easily stated in terms of the Jacobian: Coleman's conjecture For g sufficiently large there are finitely many curves of genus g such that their Jacobians have complex multiplication. Stronger conjecture (+ Andre-Oort =) Coleman). There do not exist any complex geodesics for the natural metric on Ag that are contained in Jg (and intersect Jg ). [Work on this by M¨oller-Viehweg-Zuo;Hain, Toledo...] Why might we care about the Schottky problem? Relates two important moduli spaces. Lots of beautiful geometry arises in this study. A \good" answer could help relate the geometry of Mg and Ag . Could have applications to problems about curves easily stated in terms of the Jacobian: Coleman's conjecture For g sufficiently large there are finitely many curves of genus g such that their Jacobians have complex multiplication. Stronger conjecture (+ Andre-Oort =) Coleman). There do not exist any complex geodesics for the natural metric on Ag that are contained in Jg (and intersect Jg ). [Work on this by M¨oller-Viehweg-Zuo;Hain, Toledo...] (Super)string scattering amplitudes [D'Hoker-Phong], . 4 9 +1 = 10 Schottky0s original equation 5 12 +3 = 15 Partial results (g−3)(g−2) g(g+1) g 3g − 3 + 2 = 2 \weak" solutions (up to extra components) Dimension counts g dim Mg dim Ag 1 1 = 1 indecomposable 2 3 = 3 Mg = Ag 3 6 = 6 5 12 +3 = 15 Partial results (g−3)(g−2) g(g+1) g 3g − 3 + 2 = 2 \weak" solutions (up to extra components) Dimension counts g dim Mg dim Ag 1 1 = 1 indecomposable 2 3 = 3 Mg = Ag 3 6 = 6 4 9 +1 = 10 Schottky0s original equation (g−3)(g−2) g(g+1) g 3g − 3 + 2 = 2 \weak" solutions (up to extra components) Dimension counts g dim Mg dim Ag 1 1 = 1 indecomposable 2 3 = 3 Mg = Ag 3 6 = 6 4 9 +1 = 10 Schottky0s original equation 5 12 +3 = 15 Partial results Dimension counts g dim Mg dim Ag 1 1 = 1 indecomposable 2 3 = 3 Mg = Ag 3 6 = 6 4 9 +1 = 10 Schottky0s original equation 5 12 +3 = 15 Partial results (g−3)(g−2) g(g+1) g 3g − 3 + 2 = 2 \weak" solutions (up to extra components) N Embed Ag into P and write equations for the image of Jg . Hg := Siegel upper half-space of dimension g t = fτ 2 Matg×g (C) j τ = τ; Imτ > 0g. g g g Given τ 2 Hg , have Aτ := C =(τZ + Z ) 2 Ag . AB For γ = 2 Sp(2g; ) let γ ◦ τ := (Cτ + D)−1(Aτ + B). CD Z Claim: Ag = Hg = Sp(2g; Z): Definition A modular form of weight k with respect to Γ ⊂ Sp(2g; Z) is a function F : Hg ! C such that k F (γ ◦ τ) = det(Cτ + D) F (τ) 8γ 2 Γ; 8τ 2 Hg Classical (Riemann-Schottky) approach Hg := Siegel upper half-space of dimension g t = fτ 2 Matg×g (C) j τ = τ; Imτ > 0g. g g g Given τ 2 Hg , have Aτ := C =(τZ + Z ) 2 Ag . AB For γ = 2 Sp(2g; ) let γ ◦ τ := (Cτ + D)−1(Aτ + B). CD Z Claim: Ag = Hg = Sp(2g; Z): Definition A modular form of weight k with respect to Γ ⊂ Sp(2g; Z) is a function F : Hg ! C such that k F (γ ◦ τ) = det(Cτ + D) F (τ) 8γ 2 Γ; 8τ 2 Hg Classical (Riemann-Schottky) approach N Embed Ag into P and write equations for the image of Jg .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    172 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us