Solving a Dynamic Equilibrium Model

Solving a Dynamic Equilibrium Model

Solving a Dynamic Equilibrium Model Jes´us Fern´andez-Villaverde University of Pennsylvania 1 Basic RBC Social Planner’s problem: • ∞ t max E β log ct + ψ log (1 lt) { − } tX=0 α zt 1 α ct + kt+1 = k (e lt) − +(1 δ) kt, t>0 t − ∀ zt = ρzt 1 + εt, εt (0, σ) − ∼ N This is a dynamic optimization problem. • 2 Computing the RBC The previous problem does not have a known “paper and pencil” so- • lution. We will work with an approximation: Perturbation Theory. • We will undertake a first order perturbation of the model. • How well will the approximation work? • 3 Equilibrium Conditions From the household problem+firms’s problem+aggregate conditions: 1 1 α 1 zt 1 α = βEt 1+αkt − (e lt) − δ ct (ct+1 − ) c ³ ´ t α zt 1 α 1 ψ =(1 α) kt (e lt) − lt− 1 lt − − α zt 1 α ct + kt+1 = k (e lt) − +(1 δ) kt t − zt = ρzt 1 + εt − 4 Finding a Deterministic Solution We search for the first component of the solution. • If σ =0, the equilibrium conditions are: • 1 1 α 1 1 α = β 1+αkt − lt − δ ct ct+1 − ³ ´ ct α α ψ =(1 α) kt lt− 1 lt − − α 1 α ct + kt+1 = k l − +(1 δ) kt t t − 5 Steady State The equilibrium conditions imply a steady state: • 1 1 = β 1+αkα 1l1 α δ c c − − − c ³ ´ ψ =(1 α) kαl α 1 l − − − α 1 α c + δk = k l − The first equation can be written as: • 1 =1+αkα 1l1 α δ β − − − 6 Solving the Steady State Solution: µ k = Ω + ϕµ l = ϕk c = Ωk α 1 α y = k l − 1 1 1 1 α 1 α 1 α where ϕ = 1+δ − , Ω = ϕ δ and µ = (1 α) ϕ . α β − − − ψ − − ³ ³ ´´ 7 Linearization I Loglinearization or linearization? • Advantages and disadvantages • We can linearize and perform later a change of variables. • 8 Linearization II We linearize: 1 1 α 1 zt 1 α = βEt 1+αkt − (e lt) − δ ct (ct+1 − ) c ³ ´ t α zt 1 α 1 ψ =(1 α) kt (e lt) − lt− 1 lt − − α zt 1 α ct + kt+1 = k (e lt) − +(1 δ) kt t − zt = ρzt 1 + εt − around l, k, and c with a First-order Taylor Expansion. 9 Linearization III We get: 1 y 1 (ct+1 c)+α (1 α) β zt+1+ (ct c)=Et −c y − − k y −c − α (α 1) β (kt+1 k)+α (1 α) β (lt+1 l) ( − k2 − − kl − ) 1 1 α α (ct c)+ (lt l)=(1 α) zt + (kt k) (lt l) c − (1 l) − − k − − l − − y (1 α) z + α (k k)+(1 α) (l l) (c c)+(k k)= t k t −l t t t+1 µ − − − ¶ − − +(1 δ)(kt k) − − zt = ρzt 1 + εt − 10 Rewriting the System I Or: α1 (ct c)=Et α1 (ct+1 c)+α2zt+1 + α3 (kt+1 k)+α4 (lt+1 l) − { − − − } α (ct c)=α5zt + c (kt k)+α6 (lt l) − k − − (ct c)+(kt+1 k)=α7zt + α8 (kt k)+α9 (lt l) − − − − zt = ρzt 1 + εt − 11 Rewriting the System II where 1 y α1 = α2 = α (1 α) β −c y − ky α3 = α (α 1) β α4 = α (1 α) β − k2 − kl α 1 α5 =(1 α) c α6 = + c − − l (1 l) αµ − ¶ α7 =(1 α) y α8 = y k +(1 δ) (1−α) α 1 α − α9 = y −l y = k l − 12 Rewriting the System III After some algebra the system is reduced to: A (kt+1 k)+B (kt k)+C (lt l)+Dzt =0 − − − Et (G (kt+1 k)+H (kt k)+J (lt+1 l)+K (lt l)+Lzt+1 + Mzt)=0 − − − − Etzt+1 = ρzt 13 Guess Policy Functions We guess policy functions of the form (kt+1 k)=P (kt k)+Qzt and − − (lt l)=R (kt k)+Szt,plugtheminandget: − − A (P (kt k)+Qzt)+B (kt k) − − +C (R (kt k)+Szt)+Dzt =0 − G (P (kt k)+Qzt)+H (kt k)+J (R (P (kt k)+Qzt)+SNzt) − − − +K (R (kt k)+Szt)+(LN + M) zt =0 − 14 Solving the System I Since these equations need to hold for any value (kt+1 k)orzt we need − to equate each coefficient to zero, on (kt k): − AP + B + CR =0 GP + H + JRP + KR =0 and on zt: AQ + CS + D =0 (G + JR) Q + JSN + KS + LN + M =0 15 Solving the System II We have a system of four equations on four unknowns. • TosolveitnotethatR = 1 (AP + B)= 1 AP 1 B • −C −C − C Then: • B K GC KB HC P 2 + + P + − =0 µA J − JA¶ JA a quadratic equation on P . 16 Solving the System III We have two solutions: • 0.5 1 B K GC B K GC 2 KB HC P = + + 4 − −2 −A − J JA ± õA J − JA¶ − JA ! one stable and another unstable. If we pick the stable root and find R = 1 (AP + B)wehavetoa • −C system of two linear equations on two unknowns with solution: D (JN + K)+CLN + CM Q = − AJN + AK CG CJR ALN AM−+ DG−+ DJR S = − − AJN + AK CG CJR − − 17 Practical Implementation How do we do this in practice? • Solving quadratic equations: “A Toolkit for Analyzing Nonlinear Dy- • namic Stochastic Models Easily” by Harald Uhlig. Using dynare. • 18 General Structure of Linearized System Given m states xt,ncontrols yt, and k exogenous stochastic processes zt+1, we have: Axt + Bxt 1 + Cyt + Dzt =0 − Et (Fxt+1 + Gxt + Hxt 1 + Jyt+1 + Kyt + Lzt+1 + Mzt)=0 − Etzt+1 = Nzt where C is of size l n, l n and of rank n, that F is of size (m + n l) × ≥ − × n, and that N has only stable eigenvalues. 19 Policy Functions We guess policy functions of the form: xt = Pxt 1 + Qzt − yt = Rxt 1 + Szt − where P, Q, R, and S are matrices such that the computed equilibrium is stable. 20 Policy Functions For simplicity, suppose l = n. See Uhlig for general case (I have never be in the situation where l = n did not hold). Then: 1. P satisfies the matrix quadratic equation: F JC 1A P 2 JC 1B G + KC 1A P KC 1B +H =0 − − − − − − − − The³ equilibrium´ is stable³ iff max (abs (eig (P )))´ < 1. 2. R is given by: R = C 1 (AP + B) − − 21 3. Q satisfies: N F JC 1A + I JR + FP + G KC 1A vec (Q) 0 ⊗ − − k ⊗ − − ³ = vec ´JC 1D ³ L N + KC 1D M ´ − − − − ³³ ´ ´ 4. S satisfies: S = C 1 (AQ + D) − − 22 How to Solve Quadratic Equations To solve ΨP 2 ΓP Θ =0 − − for the m m matrix P : × 1. Define the 2m 2m matrices: × ΓΘ Ψ 0 Ξ = , and ∆ = m " Im 0m # " 0m Im # 2. Let s be the generalized eigenvector and λ be the corresponding generalized eigenvalue of Ξ with respect to ∆. Then we can write s = λx ,x for some x m. 0 0 0 ∈ < £ ¤ 23 3. If there are m generalized eigenvalues λ1, λ2,...,λm together with gen- eralized eigenvectors s1,...,sm of Ξ with respect to ∆, written as m s = λx ,x for some x and if (x1, ..., xm) is linearly inde- 0 i0 i0 i ∈ < pendent,h then:i 1 P = ΩΛΩ− is a solution to the matrix quadratic equation where Ω =[x1,...,xm] and Λ =[λ1, ..., λm]. The solution of P is stable if max λ < 1. | i| Conversely, any diagonalizable solution P canbewritteninthisway. 24 How to Implement This Solver Available Code: 1. My own code: undeter1.m. 2. Uhlig’s web page: http://www.wiwi.hu-berlin.de/wpol/html/toolkit.htm 25 An Alternative Dynare What is Dynare? A platform for the solution, simulation, and estima- • tion of DSGE models in economics. Developed by Michel Juilliard and collaborators. • Iamoneofthem:) • http://www.cepremap.cnrs.fr/dynare/ • 26 Dynare takes a more “blackbox approach”. • However, you can access the files... • ...and it is very easy to use. • Short tutorial. • 27 Our Benchmark Model We are now ready to compute our benchmark model. • We begin finding the steady state. • As before, a variable x with no time index represent the value of that • variable in the steady state. 28 Steady State I From the first order conditions of the household:. • c σ = βc σ (r +1 δ) − − − } R c σ = βc σ − − π γ σ ψl = c− w We forget the money condition because the central bank, through • open market operations, will supply all the needed money to support the chosen interest rate. Also,wenormalizethepriceleveltoone. • 29 Steady State II From the problem of the intermediate good producer: • α w k = l 1 α r − Also: • 1 α α 1 − 1 1 α α mc = w − r µ1 α¶ µα¶ −p ε ∗ = mc p ε 1 − where A =1. 30 Steady State III Now, since p = p: • ∗ 1 1 α 1 α ε 1 − w1 αrα = − 1 α α − ε µ − ¶ µ ¶ By markets clearing: • α 1 α c + δk = y = k l − wherewehaveusedthefactthatx = δk and that: A =1 v The Taylor rule will be trivially satisfied and we can drop it from the • computation. 31 Steady State IV Our steady state equations, cancelling redundant constants are: • 1 r = 1+δ β − 1 R = π β γ σ ψl = c− w α w k = l 1 α r 1 α α− 1 − 1 1 α α ε 1 w − r = − µ1 α¶ µα¶ ε − α 1 α c + δk = k l − A system of six equations on six unknowns.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    171 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us