3+1 Formalism and Bases of Numerical Relativity

3+1 Formalism and Bases of Numerical Relativity

3+1 Formalism and Bases of Numerical Relativity Lecture notes Eric´ Gourgoulhon Laboratoire Univers et Th´eories, UMR 8102 du C.N.R.S., Observatoire de Paris, Universit´eParis 7 arXiv:gr-qc/0703035v1 6 Mar 2007 F-92195 Meudon Cedex, France [email protected] 6 March 2007 2 Contents 1 Introduction 11 2 Geometry of hypersurfaces 15 2.1 Introduction.................................... 15 2.2 Frameworkandnotations . .... 15 2.2.1 Spacetimeandtensorfields . 15 2.2.2 Scalar products and metric duality . ...... 16 2.2.3 Curvaturetensor ............................... 18 2.3 Hypersurfaceembeddedinspacetime . ........ 19 2.3.1 Definition .................................... 19 2.3.2 Normalvector ................................. 21 2.3.3 Intrinsiccurvature . 22 2.3.4 Extrinsiccurvature. 23 2.3.5 Examples: surfaces embedded in the Euclidean space R3 .......... 24 2.4 Spacelikehypersurface . ...... 28 2.4.1 Theorthogonalprojector . 29 2.4.2 Relation between K and n ......................... 31 ∇ 2.4.3 Links between the and D connections. .. .. .. .. .. 32 ∇ 2.5 Gauss-Codazzirelations . ...... 34 2.5.1 Gaussrelation ................................. 34 2.5.2 Codazzirelation ............................... 36 3 Geometry of foliations 39 3.1 Introduction.................................... 39 3.2 Globally hyperbolic spacetimes and foliations . ............. 39 3.2.1 Globally hyperbolic spacetimes . ...... 39 3.2.2 Definition of a foliation . 40 3.3 Foliationkinematics .. .. .. .. .. .. .. .. ..... 41 3.3.1 Lapsefunction ................................. 41 3.3.2 Normal evolution vector . 42 3.3.3 Eulerianobservers ............................. 42 3.3.4 Gradients of n and m ............................. 44 3.3.5 Evolution of the 3-metric . 45 4 CONTENTS 3.3.6 Evolution of the orthogonal projector . ....... 46 3.4 Last part of the 3+1 decomposition of the Riemann tensor . ............ 47 3.4.1 Last non trivial projection of the spacetime Riemann tensor. 47 3.4.2 3+1 expression of the spacetime scalar curvature . .......... 48 4 3+1 decomposition of Einstein equation 51 4.1 Einsteinequationin3+1form. ...... 51 4.1.1 TheEinsteinequation . 51 4.1.2 3+1 decomposition of the stress-energy tensor . .......... 52 4.1.3 Projection of the Einstein equation . ....... 53 4.2 Coordinates adapted to the foliation . ......... 54 4.2.1 Definition of the adapted coordinates . ....... 54 4.2.2 Shiftvector ................................... 56 4.2.3 3+1 writing of the metric components . ..... 57 4.2.4 Choice of coordinates via the lapse and the shift . ......... 59 4.3 3+1EinsteinequationasaPDEsystem . ...... 59 4.3.1 Lie derivatives along m as partial derivatives . 59 4.3.2 3+1Einsteinsystem ............................. 60 4.4 TheCauchyproblem................................ 61 4.4.1 General relativity as a three-dimensional dynamical system . 61 4.4.2 Analysis within Gaussian normal coordinates . ......... 61 4.4.3 Constraintequations . 64 4.4.4 Existence and uniqueness of solutions to the Cauchy problem . 64 4.5 ADM Hamiltonian formulation . ..... 65 4.5.1 3+1 form of the Hilbert action . 66 4.5.2 Hamiltonianapproach . 67 5 3+1 equations for matter and electromagnetic field 71 5.1 Introduction.................................... 71 5.2 Energy and momentum conservation . ...... 72 5.2.1 3+1 decomposition of the 4-dimensional equation . .......... 72 5.2.2 Energyconservation . 72 5.2.3 Newtonianlimit ................................ 73 5.2.4 Momentum conservation . 74 5.3 Perfectfluid..................................... 75 5.3.1 kinematics.................................... 75 5.3.2 Baryon number conservation . 78 5.3.3 Dynamicalquantities. 79 5.3.4 Energyconservationlaw . 81 5.3.5 Relativistic Euler equation . ..... 81 5.3.6 Furtherdevelopments . 82 5.4 Electromagneticfield.. .. .. .. .. .. .. .. ..... 82 5.5 3+1magnetohydrodynamics. ..... 82 CONTENTS 5 6 Conformal decomposition 83 6.1 Introduction.................................... 83 6.2 Conformal decomposition of the 3-metric . ......... 85 6.2.1 Unit-determinant conformal “metric” . ....... 85 6.2.2 Backgroundmetric.............................. 85 6.2.3 Conformalmetric............................... 86 6.2.4 Conformalconnection . 88 6.3 ExpressionoftheRiccitensor . ....... 89 6.3.1 General formula relating the two Ricci tensors . ......... 90 6.3.2 Expression in terms of the conformal factor . ........ 90 6.3.3 Formula for the scalar curvature . ..... 91 6.4 Conformal decomposition of the extrinsic curvature . .............. 91 6.4.1 Traceless decomposition . .... 91 6.4.2 Conformal decomposition of the traceless part . .......... 92 6.5 Conformalformofthe3+1Einsteinsystem . ........ 95 6.5.1 Dynamical part of Einstein equation . ...... 95 6.5.2 Hamiltonian constraint . 98 6.5.3 Momentumconstraint . 98 6.5.4 Summary: conformal 3+1 Einstein system . ...... 98 6.6 Isenberg-Wilson-Mathews approximation to General Relativity . 99 7 Asymptotic flatness and global quantities 103 7.1 Introduction.................................... 103 7.2 Asymptoticflatness............................... .... 103 7.2.1 Definition .................................... 104 7.2.2 Asymptotic coordinate freedom . ..... 105 7.3 ADMmass ....................................... 105 7.3.1 Definition from the Hamiltonian formulation of GR . ......... 105 7.3.2 Expression in terms of the conformal decomposition . .......... 108 7.3.3 Newtonianlimit ................................ 110 7.3.4 Positive energy theorem . 111 7.3.5 ConstancyoftheADMmass . 111 7.4 ADMmomentum.................................... 112 7.4.1 Definition .................................... 112 7.4.2 ADM4-momentum............................... 112 7.5 Angularmomentum ................................. 113 7.5.1 The supertranslation ambiguity . ...... 113 7.5.2 The“cure” ................................... 114 7.5.3 ADM mass in the quasi-isotropic gauge . ..... 115 7.6 Komarmassandangularmomentum. .... 116 7.6.1 Komarmass .................................. 116 7.6.2 3+1 expression of the Komar mass and link with the ADM mass ..... 119 7.6.3 Komarangularmomentum . 121 6 CONTENTS 8 The initial data problem 125 8.1 Introduction.................................... 125 8.1.1 Theinitialdataproblem. 125 8.1.2 Conformal decomposition of the constraints . ......... 126 8.2 Conformal transverse-traceless method . ........... 127 8.2.1 Longitudinal/transverse decomposition of Aˆij ................ 127 8.2.2 Conformal transverse-traceless form of the constraints ........... 129 8.2.3 Decoupling on hypersurfaces of constant mean curvature.......... 130 8.2.4 Lichnerowiczequation . 130 8.2.5 Conformally flat and momentarily static initial data . ........... 131 8.2.6 Bowen-York initial data . 136 8.3 Conformalthinsandwichmethod . ...... 139 8.3.1 The original conformal thin sandwich method . ........ 139 8.3.2 Extended conformal thin sandwich method . ...... 141 8.3.3 XCTS at work: static black hole example . ..... 142 8.3.4 Uniquenessofsolutions . 144 8.3.5 ComparingCTT,CTSandXCTS . 144 8.4 Initialdataforbinarysystems. ........ 145 8.4.1 Helicalsymmetry............................... 146 8.4.2 Helical symmetry and IWM approximation . ..... 147 8.4.3 Initial data for orbiting binary black holes . .......... 147 8.4.4 Initial data for orbiting binary neutron stars . .......... 149 8.4.5 Initial data for black hole - neutron star binaries . ........... 150 9 Choice of foliation and spatial coordinates 151 9.1 Introduction.................................... 151 9.2 Choiceoffoliation ............................... .... 152 9.2.1 Geodesicslicing............................... 152 9.2.2 Maximalslicing................................ 153 9.2.3 Harmonicslicing ............................... 159 9.2.4 1+logslicing .................................. 161 9.3 Evolution of spatial coordinates . ......... 162 9.3.1 Normalcoordinates ............................. 162 9.3.2 Minimaldistortion . .. .. .. .. .. .. .. .. 163 9.3.3 Approximate minimal distortion . ..... 167 9.3.4 Gammafreezing ................................ 168 9.3.5 Gammadrivers................................. 170 9.3.6 Otherdynamicalshiftgauges . .... 172 9.4 Full spatial coordinate-fixing choices . ........... 173 9.4.1 Spatial harmonic coordinates . ..... 173 9.4.2 Diracgauge................................... 174 CONTENTS 7 10 Evolution schemes 175 10.1Introduction................................... .... 175 10.2 Constrainedschemes . ..... 175 10.3 Freeevolutionschemes. ...... 176 10.3.1 Definitionandframework . 176 10.3.2 Propagation of the constraints . ...... 176 10.3.3 Constraint-violating modes . ...... 181 10.3.4 Symmetric hyperbolic formulations . ........ 181 10.4BSSNscheme ..................................... 181 10.4.1 Introduction ................................. 181 10.4.2 Expression of the Ricci tensor of the conformal metric........... 181 10.4.3 Reducing the Ricci tensor to a Laplace operator . ......... 184 10.4.4 Thefullscheme................................ 186 10.4.5 Applications ................................. 187 A Lie derivative 189 A.1 Lie derivative of a vector field . ....... 189 A.1.1 Introduction .................................. 189 A.1.2 Definition .................................... 189 A.2 Generalization to any tensor field . ........ 191 B Conformal Killing operator and conformal vector Laplacian 193 B.1 ConformalKillingoperator . ...... 193 B.1.1 Definition .................................... 193 B.1.2 Behavior under conformal transformations . ......... 194 B.1.3 ConformalKillingvectors

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    220 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us