Spectral Analysis – light is dispersed into a spectrum using a diffraction grating (or prism) in a spectrograph – Fraunhofer (1815) first extensive study of the Sun - identified about 600 dark lines – Fraunhofer lines - strongest named A,B,... Stars & Elementary Astrophysics: Introduction Press F1 for Help 51 Kirchhoff’s laws 3 types of spectra blackbody gas cloud 3. Continuous + absorption-line spectrum prism 2. Emission-line spectrum (+ weak continuum) 1. Continuous spectrum Stars & Elementary Astrophysics: Introduction Press F1 for Help 52 Kirchhoff’s laws A hot opaque body, e.g. a hot dense gas, produces a continuous spectrum, e.g. a “black-body” spectrum. A hot transparent gas emits an emission-line spectrum , bright spectral lines, sometimes with a faint continuous spectrum. A cool transparent gas in front of a continuous spectrum source produces an absorption-line spectrum - a series of dark spectral lines. (Kirchoff and Bunsen laboratory experiments, 1850s) Stars & Elementary Astrophysics: Introduction Press F1 for Help 53 Vega - absorption lines SS Cygni - emission lines Stars & Elementary Astrophysics: Introduction Press F1 for Help 54 Kirchoff’s Laws absorption lines hot opaque interior, cool transparent atmosphere hot transparent gas (accretion disc) emission lines Stars & Elementary Astrophysics: Introduction Press F1 for Help 55 Spectral Fingerprints – Each element / molecule absorbs and emits only certain specific wavelengths of light. – Spectral lines are diagnostic of the chemical composition and – physical conditions (temperature, pressure) Stars & Elementary Astrophysics: Introduction Press F1 for Help 56 Atoms and Ions • atoms: nucleus (protons + neutrons) + electrons mass charge proton 1 +1 neutron 1 0 electron 1/1836 -1 atom - neutral : equal numbers of protons (+ve) and electrons (-ve) ion - ionised : electrons removed, positive net charge Stars & Elementary Astrophysics: Introduction Press F1 for Help 57 Atoms and Ions • Examples: – Hydrogen ( H ) ( 1 proton ) + 1 electron – H II ( 1p ) charge +1 – Helium (He) ( 2p + 2n ) + 2 e- 0 – He II ( 2p + 2n ) + 1 e- +1 – He III ( 2p + 2n ) +2 – Oxygen (O) ( 8p + 8n ) + 8 e- 0 – OIII ( 8p + 8n ) + 6 e- +2 – OVI ( 8p + 8n ) + 3 e- +5 Stars & Elementary Astrophysics: Introduction Press F1 for Help 58 Atomic Energy Levels e.g. Hydrogen: 2 I = - e = - ¥ E n 2 rn n 3 2 E1 = -13.6 eV E ¥ = 0 n=1 I =13.6 eV = Ionisation Potential e = proton charge r = size of electron orbit Stars & Elementary Astrophysics: Introduction Press F1 for Help 59 Atomic Transitions bound-free free-free bound-bound ¥ 3 2 photon n=1 absorption ionisation recombination emission Stars & Elementary Astrophysics: Introduction Press F1 for Help 60 • Energy change associated with each transition is hc E=h f = ( h is Planck's constant) l higher E ® higher frequency (shorter wavelength) photon is absorbed/emitted • energy changes are very small – measured in ELECTRON VOLTS (eV) 1 eV = 1.602 ´ 10-19 J Stars & Elementary Astrophysics: Introduction Press F1 for Help 61 Energy Conservation bound-bound free-free h c + E1 = E2 l h c 1 2 bound-free + m v1 l1 2 h c 1 2 = + m v2 h c 1 2 l 2 2 + E1 = E¥ + m v l 2 Stars & Elementary Astrophysics: Introduction Press F1 for Help 62 • Example: – H atom • (see handout: energy level diagram) – Energy difference between the ground state (n=1) and the first excited state (n=2) : æ 1 1 ö E = E2 - E1 = I ´ç - ÷ = (13.6 eV)(0.75)= 10.2 eV è12 22 ø h c (6.626 ´ -34 J s)(3 ´ 8 m/s)( 9 nm/m) l = = 10 10 10 E (10.2 eV)(1.602 ´10-19 J/eV) = 121.6 nm in UV part of spectrum Lyman a line (La) Stars & Elementary Astrophysics: Introduction Press F1 for Help 63 Lyman Series ¥ 3 2 n=1 Lyman a b g L ¥ 91.2 nm Lyman continuum photons ionise H from the ground state. Stars & Elementary Astrophysics: Introduction Press F1 for Help 64 Balmer Series ¥ 3 2 Balmer Ha Hb H¥ 656.3 nm 364 nm n=1 Balmer continuum photons ionise from n=2 Stars & Elementary Astrophysics: Introduction Press F1 for Help 65 Balmer absorption and emission lines H¥ Hb Ha Stars & Elementary Astrophysics: Introduction Press F1 for Help 66 Rydberg formula 1 æ 1 1 ö = Rç 2 - 2 ÷ l è n l nu ø 1 7 -1 = 91.2 nm - Rydberg constant R = 1.097 ´ 10 m R nl - principal quantum number of lower level nu - " " " of upper level LYMAN series nl = 1 nu = 2, 3, 4 … UV BALMER 2 3, 4, 5 … visible PASCHEN 3 4, 5 … near IR BRACKETT 4 5, 6 … IR PFUND 5 6, 7 … IR Stars & Elementary Astrophysics: Introduction Press F1 for Help 67 • Hydrogen is simplest. • Multi-electron atoms have more complicated energy-levels. • ions with 1 electron are like Hydrogen but with larger Ionisation Potential due to higher charge of nucleus Stars & Elementary Astrophysics: Introduction Press F1 for Help 68.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages18 Page
-
File Size-