Board on Mathematical Sciences & Analytics

Board on Mathematical Sciences & Analytics

Board on MathematicalView webinar videos Sciences and learn more & about Analytics BMSA at www.nas.edu/MathFrontiers MATHEMATICAL FRONTIERS 2019 Monthly Webinar Series, 2-3pm ET February 12: Machine Learning September 10: Logic and Foundations* for Materials Science* October 8: Mathematics of Quantum March 12: Mathematics of Privacy* Physics* April 9: Mathematics of Gravitational November 12: Quantum Encryption Waves* December 10: Machine Learning for Text May 14: Algebraic Geometry* June 11: Mathematics of Transportation* Made possible by support for BMSA from the July 9: Cryptography & Cybersecurity* National Science Foundation Division of Mathematical Sciences August 13: Machine Learning in and the Department of Energy Medicine* Advanced Scientific Computing Research * Webinar posted View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 2 MATHEMATICAL FRONTIERS Quantum Encryption Delaram Kahrobaei, Dustin Moody, Mark Green, University of York NIST UCLA (moderator) View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 3 MATHEMATICAL FRONTIERS Quantum Encryption Chair of Cyber Security University of York (UK) Adjunct Professor of Computer Science NYU: New York University Doctoral Faculty of Computer Science GC CUNY: The City University of New York Post-Quantum Prof. Delaram Kahrobaei Cryptography University of York ViewView we bwebinarinar vid videoseos a nandd l elearnarn mmoreore aboutabout BMSA BMSA at a twww.nas.edu www.nas.edu/MathFrontiers/MathFrontiers 4 4 Qu a n t um Com put at i o n Qu a n t um Com put er s are N o t a repl acem en t o f t he c l a ssi cal co m put er s I t wo r k s f a st er f o r so m e speci al c l a sses o f pr obl em s. View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 5 qu bi t A q u b i t i s t h e q u a n t u m a n al o gu e o f a c l a ssi cal bi t, a n d ca n be t ho u g ht o f a s v e c t o r s. T h e ba si s s t a t e s (ba si s vect o r s) ar e 1 0 | 0⟩ = a n d | 1⟩ = [ 0] [ 1] View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 6 Com bi n ed cu bi t s T hese ca n be co m bi n ed . I f we have t wo qu bi t s, t he st at es ar e 1 0 0 1 | 00⟩ = | 01⟩ = 0 0 0 0 0 0 0 0 | 10⟩ = | 11⟩ = 1 0 0 1 View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 7 Su per po si t i o n A pu r e qubi t st at e i s a l i n ear su per po si t i o n o f t hese ba si s st a t e s, w i t h p r o b a b i l i t y am pl i t u d es α, β ∈ ℂ | ψ⟩ = α| 0⟩ + β| 1⟩ View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 8 Ho w m a n y qu bi t s d o we have? A pa i r o f qu bi t s t hat ca n exi st a s ei t her 1s o r 0 s ca n em bo d y 4 po ssi bl e st at es. 3 qu bi t s ca n em bo d y 8 . View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 9 NSA NI ST Ann o u n cem en t f o r Sear c h o f Po st-Quan tum Pr i m i t i ves View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 10 T he qu a n t um - saf e pr i m i t i ves u n d er co n si d er at i o n by NI ST Mu l t i var i at e pr i m i t i ves (Syst em o f m u l t i var i at e po l yn o m i al equ at i o n s) Co d e- ba sed pr i m i t i ves (Deco d i n g pr o bl em i n a lin ear co d e) Lat t i ce- ba sed pr i m i t i ves (Sho r t o r c l o se vect o r pro bl em i n a l at t i ce) Ha sh- ba sed pr i m i t i ves (F i n d i n g co l l i si o n s o r pr ei m ag es i n cr ypt o g r a phi c ha sh f u n ct i o n s) I so g en y- ba sed k ey pr i m i t i ves (f i n d i n g a n u n k n o wn i so g en y bet ween a pa i r o f su per si n gu l ar el l i pt i c c u r ves) G r o u p- ba sed pr i m i t i ves (al g o r i t hm i c g r o u p theo r et i c pr o bl em s) View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 11 Cyber Secu r i t y: Cr ypt o g r a phy Key Exc ha n g es (RSA, DH) Sym m etri c Key En cr ypt ion Di g i t al Si g n at u r es Mu l t i l i n ear Ma ps Ful l y Ho momor phi c En cr ypt i o n s Aut hen t i cat i o n Se cr et Shar ing View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 12 Gro u p T heo r y i n Cr ypt o g r a phy Po l ycyc l i c G r o u ps: Ei ck , Ka hr obaei G r a ph (RAAG ) G r o u ps: F l o r es, Ka hr obaei, Ko ber da Hyper bo l i c G r o u ps: Chat t erji , Ka hr obaei Ar i t hm et i c G r o u ps: Ka hr obaei, Mal l a hi - Karai Ni l pot en t G r o u ps: Ka hr obaei, To r t o ra, To t a Eng el Gro u ps: Ka hr obaei, No ce Free n i l pot en t p- g r o u ps: Ka hr obaei, Shpi l rain Sem i g r o u p o f Mat r i ces o ver G r o u p- Ri n g s: Ka hr obaei, Ko u ppar is, Shpi l rain Sm al l Can cel l at i o n G r o u ps: Ha beeb, Ka hr obaei, Shpi l rain Free Met a bel i a n : G r o u ps: Shpi l rain, Z apat a , , Ka hr obaei, Ha beeb View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 13 Gro u p T heo r y i n Cr ypt o g r a phy Li n ear : G r o u ps: Ba um sl ag, F i n e, Xu Br a i d G r o u ps: Anshel - An shel - G o l dfel d , Ko - Lee Grigo r chuk G r o u ps: Pet r i d es Aut o m at a G r o u ps: G r igo r c huk , G r igo r iev G r o u ps o f Mat r i ces: Grigo r iev, Po n am eran co T ho m pso n : G r o u ps: Shpi l rain, Ushak o v View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 14 Al g o r i t hm i c G r o u p Theo r et i c Pr o bl em s u sed i n Cr ypt o g r a phy Di scr et e Lo g ar i t hm Pr obl em Su bg r o u p I so m o r phi sm Pr obl em G r o u p Ho m o m o r phi sm Pr obl em Po wer Con j u g ac y Sear ch Pr obl em G eo d esi c Len g t h Pr obl em Di st o r t ed Subg r o u p Con j u g ac y Sear ch Pr obl em Wo r d Dec i si o n Pr o bl em En d o m o r phi sm Sear c h Pr obl em Deco m po si t i o n Sear c h Pr obl em Subg r o u p mem ber shi p Pr obl em View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 15 Appr o aches t o Po st- qu a n t um G r o u p- Ba sed Cr ypt o g r a phy NP- Com pl et e a n d Un so l va bl e G r o u p- T heo r et i c Pr o bl em s An al ysi n g equ i val en ce t o Hi d d en Subg r o u p Pr obl em An al ysi n g G r o ver 's Sear ch Pr o bl em View webinar videos and learn more about BMSA at www.nas.edu/MathFrontiers 16 Hi d d en Su bg r o u p Pr obl em (HSP) Given a f ini t el y g en erat ed g r o u p G a n d a n ef f i cien t l y co m put a bl e f u nct i o n f f r o m G t o so m e f i n i t e set S su ch t hat f i s co n st a n t a n d d i st i n ct o n l ef t- co set s o f a su bg r o u p H o f f i n i t e i n d ex, f i n d a g en er at i n g set f o r H.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    42 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us