Preimages of Reduced SHA-0 and SHA-1

Preimages of Reduced SHA-0 and SHA-1

Preimages for Reduced SHA-0 and SHA-1 Christophe De Cannière and Christian Rechberger ENS Katholieke Universiteit Leuven Graz University of Technology Leiden, 2008 Some properties of hash functions • Efficient to compute • One-way • Collision resistance One-wayness HashHash FunctionFunction One-wayness Applications: Storing a password HashHash Payment schemes FunctionFunction Key derivation Commitment schemes Random number generation … Status of SHA-1 (as of this afternoon) • Differential collision attacks – Wang et al., 2005: 269 – Joux and Peyrin, 2007: claim 25 improvement over x – Wang et al.: 263/262, unpublished – Mendel, Rechberger, Rijmen: 260.x, unpublished • Preimage Attacks – Reuse of collision attacks? – Dedicated attacks? Status of SHA-1 (as of this afternoon) • Differential collision attacks – Wang et al., 2005: 269 – Joux and Peyrin, 2007: claim 25 improvement over x – Wang et al.: 263/262, unpublished – Mendel, Rechberger, Rijmen: 260.x, unpublished http://boinc.iaik.tugraz.at • Preimage Attacks – Reuse of collision attacks? – Dedicated attacks? Status of SHA-1 (as of this afternoon) • Differential collision attacks – Wang et al., 2005: 269 – Joux and Peyrin, 2007: claim 25 improvement over x – Wang et al.: 263/262, unpublished – Mendel, Rechberger, Rijmen: 260.x, unpublished • Preimage Attacks – Reuse of collision attacks? – Dedicated attacks? Preimage Attack Strategies • Collision Differentials (+ Message Modification) – Yu/Wang et al., 2005: MD4 • Multi-Near-Collision Differentials – Biham/Shamir, 1991: Snefru – Dobbertin, 1998: reduced MD4 – Lamberger et al., 2007: SMASH – Leurent, 2008: MD4 – Mendel et al., 2008: GOST hash – SHA-0/SHA-1? Preimage Attack Strategies • Collision Differentials (+ Message Modification) – Yu/Wang et al., 2005: MD4 • Multi-Near-Collision Differentials – Biham/Shamir, 1991: Snefru – Dobbertin, 1998: reduced MD4 – Lamberger et al., 2007: SMASH – Leurent, 2008: MD4 – Mendel et al., 2008: GOST hash • Correcting Impossible Messages – De Cannière/Rechberger, 2008: red. SHA-0 and SHA-1 Outline of MD4-style Hash Functions IV Expanded Message m Message w (48/64/80 words) (16 words) Message Expansion Output o (4/5/8 words) Message Expansions in the MD4 family MD4/5, RIPEMD SHA-0 / SHA-1 SHA-2 members Permutation Linear Recurrence Non-Linear Recurrence Outline of MD4-style Hash Functions IV Expanded Message m Message w (48/64/80 words) (16 words) Message Expansion Output o (4/5/8 words) Evolution of the State Updates in the MD4 Family MD4 SHA-0/SHA-1 SHA-2 members K + + << 5 Σ0 Σ1 + K + f KN+1 + + M W A C + + f + + J H W W << s N+1 + >> 2 + + + AN BN CN DN EN FN GN HN Design Complexity Inverting SHA-1 compress Why is it hard? Inversion problem, reconsidered before new, but equivalent Inversion problem, reconsidered W will not be valid expanded before message, E is error mask Why could it be easier? before new, correcting invalid message Details of new techniques Outline 1 Compression Function Attack: Correcting Impossible Messages Basic Technique Complexity Getting Rid of Those Carries 2 From attacks on compress function to hash function Using More Blocks: Birthday Using Even More Blocks: P3Graphs Outline 1 Compression Function Attack: Correcting Impossible Messages Basic Technique Complexity Getting Rid of Those Carries 2 From attacks on compress function to hash function Using More Blocks: Birthday Using Even More Blocks: P3Graphs Ai ∗ IV Ei (h − IV )∗ Ai Ei Ai Ei Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Ai Ei R − 16 R − 5 expect 211 solutions Outline 1 Compression Function Attack: Correcting Impossible Messages Basic Technique Complexity Getting Rid of Those Carries 2 From attacks on compress function to hash function Using More Blocks: Birthday Using Even More Blocks: P3Graphs Ai Ei R − 16 R − 5 7 Ai Ei R − 16 R − 5 7 27·(R−16) trials Outline 1 Compression Function Attack: Correcting Impossible Messages Basic Technique Complexity Getting Rid of Those Carries 2 From attacks on compress function to hash function Using More Blocks: Birthday Using Even More Blocks: P3Graphs Ai Ei Ai Ei R − 16 R − 5 expect 227−R solutions Ai Ei R − 16 R − 5 expect 227−R solutions Ai Ei R − 16 R − 5 Ai Ei R − 16 R − 5 Ai Ei R − 16 R − 5 Ai Ei R − 16 R − 5 Ai Ei R − 16 R − 5 Ai Ei R − 16 R − 5 Ai Ei R − 16 R − 5 2 Ai Ei R − 16 R − 5 2 22·(R−16)+5·(R−27) trials Outline 1 Compression Function Attack: Correcting Impossible Messages Basic Technique Complexity Getting Rid of Those Carries 2 From attacks on compress function to hash function Using More Blocks: Birthday Using Even More Blocks: P3Graphs Ai ∗ IV Ei R − 16 R partial preimage 22·(R−16)+5·(R−32) trials C Ai C Ei R − 16 R pseudo preimage 22·(R−16)+5·(R−32) trials (h − C)∗ Outline 1 Compression Function Attack: Correcting Impossible Messages Basic Technique Complexity Getting Rid of Those Carries 2 From attacks on compress function to hash function Using More Blocks: Birthday Using Even More Blocks: P3Graphs Ai C Ei R − 16 R +5 partial pseudo preimage 22·(R−16)+5·(R−37) trials C P3Graph (N nodes) P3Graph (N/4edges) P3Graph (N/2edges) P3Graph (N edges) P3Graph (2 × N edges) P3Graph method Examples of results on reduced SHA-0 and SHA-1 Results on reduced SHA-0 and SHA-1 Preimage attacks on full SHA-1? Collisions Collisions Preimages before 2005 now now #rounds 53/58 >80 44/45 #freedom >200 0 >200 Sensitive to different choices yes no yes for rotation constants Discussion/Summary Two new cryptanalytic techniques • Correcting invalid messages – Inversion problem is larger, but less interconnected – Regular structure of SHA-0/SHA-1 helps to divide/conquer the problem •P3Graphs – Random (directed) graphs as useful object (introduced in the 1950s) in cryptanalysis: – Transfer results for compression function to hash function at cost of: factor 4 (total) factor 1 (having factor 3 precomputation) – Cycles in random graph help with padding problem Preimages for Reduced SHA-0 and SHA-1 Christophe De Cannière and Christian Rechberger Q&A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    66 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us