ICFP M2 - Statistical Physics 2 Selected References

ICFP M2 - Statistical Physics 2 Selected References

ICFP M2 - Statistical physics 2 Selected references Gr´egory Schehr, Guilhem Semerjian January 2020 • Probability theory (stable laws, extreme value distributions) – J.-P. Bouchaud, A. Georges, Anomalous Diffusion in Disordered Media: statistical mechan- ics, models and applications, Phys. Rep. 195 127 (1990). – W. Feller, An introduction to probability theory and its applications, Wiley (1968). – S. Resnick, Extreme values, regular variation and point processes, Springer (1987). • Spin-glasses – M. M´ezard, G. Parisi, M.A. Virasoro, Spin-glass theory and beyond, World Scientific (1987). – T. Castellani, A. Cavagna, Spin-glass theory for pedestrians, J. Stat. Mech. P05012 (2005), cond-mat/0505032. – F. Zamponi, Mean-field theory of spin glasses, arXiv:1008.4844. • Glasses – L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous mate- rials, Rev. Mod. Phys. 83, 587 (2011), arXiv:1011.2578. – A. Cavagna, Supercooled liquids for pedestrians, Physics Reports 476, 51 (2009), arXiv:0903.4264. • Localization and random matrices – T. Guhr, A. Mueller-Groeling, H. A. Weidenmueller, Random Matrix Theories in Quantum Physics: Common Concepts, Physics Report 299 189 (1998). – M. Mehta, Random matrices, Academic Press (2004). – G. Akemann, J. Baik, P. Di Francesco, The Oxford handbook of random matrix theory, Oxford (2011). – G. Livan, M. Novaes, P. Vivo, Introduction to Random Matrices - Theory and Practice, Springer (2018), arXiv:1712.07903. – M. Aizenman, S. Warzel, Random operators, AMS (2015). • Random graphs – S. Janson, T. Luczak, A. Rucinski, Random graphs, Wiley (2000). – M. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003), cond-mat/0303516. • Applications to computer science and information theory – T. Cover, J. Thomas, Elements of information theory, Wiley (1991). – T. Richardson, R. Urbanke, Modern coding theory, Cambridge (2008). – M. M´ezard, A. Montanari, Information, physics and computation, Oxford (2009). 1 – R. Monasson, Introduction to phase transitions in random optimization problems, Complex Systems, Les Houches Summer School 2006 (2008), arXiv:0704.2536. • Books on advanced methods and concepts in statistical physics containing a miscellanea of the previous topics – J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics, Cambridge University Press (1996). – P.L. Krapivsky, S. Redner, E. Ben-Naim, A kinetic view of Statistical Physics, Cambridge University Press (2010). 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us