
ICFP M2 - Statistical physics 2 Selected references Gr´egory Schehr, Guilhem Semerjian January 2020 • Probability theory (stable laws, extreme value distributions) – J.-P. Bouchaud, A. Georges, Anomalous Diffusion in Disordered Media: statistical mechan- ics, models and applications, Phys. Rep. 195 127 (1990). – W. Feller, An introduction to probability theory and its applications, Wiley (1968). – S. Resnick, Extreme values, regular variation and point processes, Springer (1987). • Spin-glasses – M. M´ezard, G. Parisi, M.A. Virasoro, Spin-glass theory and beyond, World Scientific (1987). – T. Castellani, A. Cavagna, Spin-glass theory for pedestrians, J. Stat. Mech. P05012 (2005), cond-mat/0505032. – F. Zamponi, Mean-field theory of spin glasses, arXiv:1008.4844. • Glasses – L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous mate- rials, Rev. Mod. Phys. 83, 587 (2011), arXiv:1011.2578. – A. Cavagna, Supercooled liquids for pedestrians, Physics Reports 476, 51 (2009), arXiv:0903.4264. • Localization and random matrices – T. Guhr, A. Mueller-Groeling, H. A. Weidenmueller, Random Matrix Theories in Quantum Physics: Common Concepts, Physics Report 299 189 (1998). – M. Mehta, Random matrices, Academic Press (2004). – G. Akemann, J. Baik, P. Di Francesco, The Oxford handbook of random matrix theory, Oxford (2011). – G. Livan, M. Novaes, P. Vivo, Introduction to Random Matrices - Theory and Practice, Springer (2018), arXiv:1712.07903. – M. Aizenman, S. Warzel, Random operators, AMS (2015). • Random graphs – S. Janson, T. Luczak, A. Rucinski, Random graphs, Wiley (2000). – M. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003), cond-mat/0303516. • Applications to computer science and information theory – T. Cover, J. Thomas, Elements of information theory, Wiley (1991). – T. Richardson, R. Urbanke, Modern coding theory, Cambridge (2008). – M. M´ezard, A. Montanari, Information, physics and computation, Oxford (2009). 1 – R. Monasson, Introduction to phase transitions in random optimization problems, Complex Systems, Les Houches Summer School 2006 (2008), arXiv:0704.2536. • Books on advanced methods and concepts in statistical physics containing a miscellanea of the previous topics – J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics, Cambridge University Press (1996). – P.L. Krapivsky, S. Redner, E. Ben-Naim, A kinetic view of Statistical Physics, Cambridge University Press (2010). 2.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages2 Page
-
File Size-