Estimating Steady-State Evaporation Rates from Bare Soils Under

Estimating Steady-State Evaporation Rates from Bare Soils Under

I v~ eFT<~ f'f*f{J - - I UNITED STATES I DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY I WATER RESOURCES DIVISION I I I ESTIMATING STEADY-STATE EVAPORATION RATES FROM I BARE SOILS UNDER CONDITIONS OF HIGH WATER TABLE BY I C. D. RIPPLE, J. RUBIN AND T. E. A. VAN HYLCKAMA I I~ I~ .- OPEN-FILE REPORT IcC I I Wa.tvr. RcuoUJtee6 fJ.iv.U.ion I Mualo J'aJtk, Cali6o!UUa. I 1910 I I l.128) I I Contents I 2 Page 3 Symbols----------~---------------------------------------------- iii I 4 Abstract-------------------------------------------------------- 1 5- Introduction------~--------------------------------------------~ 2 I 6 Theory-------------------------.--------------------------------- 4 7 Meteorological equation----------·-------------------------- 5 I Soil equation---------------------------------------------- 8 8 Application-----------------------------------------------------· 14 I 9 Data required--------------------------------------------~- 14 10- Homogeneous soil---------------------------------------•--- 17 Layered soil----------------------------------------------- 30 I 11 Effects of vapor·transfer---------------------------------- 36 I 12 Discussion, experimental test; and conclusions-------------.----- 46 13 Appendix: Flow charts for es.timating steady-state evaporation rates from bare soils-------------------- 58 14 I References------------------~----------------------------------- 60 15- I 16 Illustrations I 17 18 Figure 1. The water-table-soil-atmosphere systems considered: I 19 Case A. A homogeneous soil with water transferred 20- exclusively in liquid form; Case B. A layered soil with I 21 water transferred exclusively in liquid form; Case c. 22 A homogeneous soil with water transferred in liquid and 9 I 23 vapor forms------------------------------------------------ I 24 25-- ll. S. GOVERNMENT PIUNTING OFFICE: 1959 0-511171 I 867-100 i I I I Page 1 n I 2 Figure 2. Dimensionless plots of f·= f(e) = (e+l) (;1) ---- 19 3 yu 4 Figure 3. Dimensionless plots. of I = I(y ) I u = r ...2L. 20 Jo yn+l 5- I 6 Figure 4. Dependence of dimensionless soil water suction, s, I 7 on dimensionless soil height, z: A. Soil parameter n = 2; 8 B. Soil parameter n = 5----------------------------------- 21 I 9 Figure 5. Plots relating dimensionless evaporation, e, to 10- dimensionless depth to water ·table, .(,---------------------- . 23- I u Figure 6. The intercept method for determining evaporation I 12 rates: A. Chino clay; B. Buckeye soil------------•----- 25 13 Figure 7. Dependence of evaporation rates on water table I 14 depths, calculated by intersection method (solid lines).: 15- A. Chino clay; B. Buckeye soil--~--------------------•-- 27 I 16 Figure 8. The dependence of relative evaporation rates, 17 E/E po t' upon the potential evaporation rates, Epo t' for I 18 Chino clay------------------------------------------------- 29 I 19 Figure 9e The influence of layering on the relation between 20- evaporation rate and depth to water table: i. the I 21 homogeneous case(~= 0); ii. a two-layered soil; 22 iii. a three-layered soil.,.·-------------------------------- 37 I 23 Figure 10. Comparison of actual versus estimated evaporation· I 24 rates for a given depth to water table--------------------- 53 25·- II. S. GOVERNMENT PHINTING OFFICE: 1959 0- 511171 I 867 ·100 ii I I~ ·:>r:.·l I I Symbols = a subscript, indicating a variable determined in the air, I ;a H em above the soil surface. a I I I:u = a subscript, indicating a variable determined at the soil I surface. I = a subscript, indicating a variable which involves water .v I vapor transfer. I ..a -1 = sensible heat transfer into the air, cal em day -· I b = -B(Tu - ~) /L~, gm em -4 -3 0 -1 B = (1'\/cr) (C/o.)s', gm em K • -1 I c = E/Dhv' em I D = a coefficient characterizing the molecular diffusion of watert a ! a -1 I vapor in free air, em day Dhv = a coefficient characterizing the molecular diffusion of I. a -1 soil-water vapor caused by humidity gradients, em day • I DTv = a coefficient characterizing the molecular diffusion of a -1 o -1 · soil-water vapor caused by thermal gradients, em day K •· I e E/K t' rate of evaporation from the soil, dimensionless. = sa -1 I E = rate of evaporation from the soil, em day • e rate of potential evaporation, dimensionless. pot = -1 E rate of potential evaporation, em day pot = I soil-limited = ~'-&tias~rate of evaporation from the soil, dimensionless. soil-limited I E 1 co = ·2i,_ j tirg.Arate o f evaporat~on· f rom t h e soi 1 , em day~ I f(e) = a functional relation defined by equation 27. • t.l..l\( ti'"·l ':· •j, , :• ! II' I iii I 1.. : ;•1';7 I I ... -------·-----~------·-·-·-------------·· ..... - .... ·-·- .... -.--.............. , I a function which relates E and S , using meteorological = u I parameters. = a function which relates E and su' using soil parameters. ..a I = acceleration of gravity, = 980 em sec ·· ;G(V a) = a theoretically or empirically derived known function of -1 -1 I wind speed, em day mb I = relative humidity, dimensionless. air relative humidity at height H above the soil surface, = a I dimensionless. 1H height of meteorological measurements above the soil surface, a = I em. ·h = surface soil relative humidity, dimensionless. I u .H roughness parameter, em (usually, for bare soils, .u = 0.01 S H s 0.-03). I. u soil humidity at depth L , dimensionless. = relative u I h* = soil relative humidity at d.epth L *, dimensionless. 1 ~ I(y) = the integral relation defined by the right-hand side of I equation 18. = von Karman constant = 0.41, dimensionless. I -1 K = Kliq = hydraulic conductivity for liquid flow, em day -1 .K hydraulic conductivity of water saturated soil,. em day I sat = -1 hydraulic conductivity ·for vapor flow, em day Kvap = I = L/S%' dimensionless depth to water table. I L = total distance between the water table and soil surface, em. .. ; • ' '. : \ 1·. I'~ •.\. 1·: • • ' •H i.'.. ! 11 .. •• • • ~· l : •. I I .. [.' iv I I . ;·~. 1 I r·--·-··-- .. -------·------...,...----- ---------------·---------------- ------.--. ! I I I i L. in the multilayer case, the thickness of soil layer, em, j J = layers above ~he water table (that is, j = 1 means one layer i I 1 above the water table, etc.). I jL thickness of the uppermost soil layer, em. : u = I iL* = thickness of the uppermost portion of the dry soil surface I I U at which ~ was determined, em. I :L' = thickness of the dry soil layer in which isothermal vapor u I transfer is assumed to predominate, em. -1 :M = molecular weight of water = 18 gm mol • ; I n = an integer soil coefficient which usually ranges from 2 for clays to 5 in sands. I p = saturation vapor pressure of water, mb. p(T) = a known relation between the saturation water. vapor . I pressure and temperature (given in tabular or functional I form), mb. P = ambient pressure, mb (taken asP= 1000mb in this study). -1 I q = flux of water, em day -2 -1 Qg = soil heat flux into the ground, cal em day I = net radiative flux received by the soil surface, cal em ~ -1 I day • 7 0 -1 R = gas constant = 8.32 x 10 erg K • s = S/S~, dimensionless suction. I 2 s = soil water suction, defined as the negative of the soil water I pressure head, em of water. I Sj = in the multilayer case, the soil water suction at the upper interface of layer j, em of water. I 1,1 • .'! ,,·.'·' v I I I I s water suction at the soil surface, em of water. u = = a constant soil coefficient representing S at K = L K I ":! sat' em of water. I T = temperature, °K. 0 T = air temperature at H , K. I a . a T surface soil temperature, °K. u = I :r,. = soil temperature at depth L:, °K. -1 = wind speed at height H , em day a I y = a variable, defined by equation 16. = a variable, defined in conjunction.with the right-ha~d side I of equation 31 of the layered ·Soil case. I z = Z/S~,· dimensionless height above water table. Z = vertical height above the water table, em. I = tortuosity factor, dimensionless. ...:3 0 -1 I d(log p )/dT, gm em K s = e v 0 -1 I y = psychrometric constant, 0.000659 P, mb K I e: = water/air molecular ratio= 0.622 (dimensionless). C = a ratio of the average temperature gradient in the air-filled I soil pores to the overall soil temperature_ gradient, dimensionless. I 11 = soil porosity, dimensionless. -1 = latent heat of vaporization of water at T , cal gm A. a -3 I = air density at T , gm em a ...:3 p = P (T) = density of saturated water vapor, gm ern p is a I v v . v function of temperature. I -·· . - ... vi I ·-··· .. -- -¥·--- .. :... ·-- ...·----· ---------~-- -·-··-...:.--~...,..----··. -'3 = water density at appropriate T, grn em = volumetric air cqntent of the soil, dimensionless. = a dimensionless function defining the effectiveness of the water-fl;'ee ·pore· space for diffusion. ., I l 1 ,. ' , 1 .' ~ I , ', · : '•i. : I J• ' , . • ··~ 1 ~ •l ; , vii ,,126) I I I 2 3 4 I I I 5 .. I I I b I ESTIMATING STEADY-STATE EVAPORATION RATES FROM I I 7 BARE SOILS UNDER CONDITIONS OF HIGH WATER TABLE I I I I H I By C. D. Ripple, J. Rubin and T. E. A. van Hylckama i I I 1.:1 I I i I 10- I I ABSTRACT I. t I 11 I I I A procedure that combines meteorological and soil equations of i !water transfer makes it possible to estimate approximately the I ! I steady-state evaporation from bare soi·ls under conditions of high water; I, . · . .Ii l4 1 I table. Field data required include soil-water retention curves, water 1 1?· • j table depth and a record of air temperature, air humidity and wind I lb ~velocity at one elevation. The procedure takes into acount the I l i ~relevant atmospheric factors and the soil's capability to conduct I~ 'water in liquid and vapor .forms.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    73 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us