From the Heliosphere Into the Sun –Sailingagainstthewind–

From the Heliosphere Into the Sun –Sailingagainstthewind–

511th WE-Heraeus-Seminar From the Heliosphere into the Sun –SailingagainsttheWind– Collection of presentations Edited by Hardi Peter ([email protected]) Physikzentrum Bad Honnef, Germany January 31 – February 3, 2012 http://www.mps.mpg.de/meetings/heliocorona/ Where to Go Beyond MHD! (Bad Hanof, Jan, 2012)! Eric Priest (St Andrews)! 1. INTRODUCTION! Eckart Marsch! towering figure in heliospheric physics:! "- pioneering work w. Helios A&B (1974-85)! "- 2 books on solar wind (90,91) with Rainer Schwenn! "- breakthro’s in theory …..! • 90’s: chair ESA S. Phys. Plan. Gp – recommend future mission! • 98 Tenerife Conference “Future of S. Phys.” ! "-- what after SoHO ??? ! • quality science, deep understanding,Recommendations fine! human qualities, ! •(i) delight/pleasureESA choose Solar! Orbiter as next solar/helio mission! To d a y: " "(i) MHD successes! (ii) European contributions to NASA Stereo & Probe Missions! (iii)"""" ESA discuss(ii) w NASAAlternative & other agencies models to &cooordinate assumptions future missions! ! 2. Eqns of Magnetohydrodynamics(MHD)! Unification of Eqns of:! (i) Maxwell! ∇ × B / µ = j + ∂ D / ∂ t, ∇.B = 0, ∇ × E = −∂ B / ∂ t, ∇.D = ρc, where B = µH, D = ε E, E = j / σ . where assume v<<c and so neglect displacement current! and in frame moving with plasma: ! E + v × B = j/σ € € (ii) Fluid Mechanics! dv Motion ρ = − ∇p, dt dρ Continuity + ρ∇.v = 0, dt Perfect gas p = R ρ T, Energy eqn. ............. where d / dt = ∂ / ∂t + v.∇ Add magnetic force! j × B € € € MHD Equations! dv ρ = −∇p + j × B equation of motion! dt Eliminate j, E from Maxwell’s eqns:! ∂B 1 € = ∇ × (v × B) +η∇2B induction equation! η = ∂t µσ magnetic diffusivity! Other equations are:! ∂ρ + ∇ • (ρ v) = 0 mass continuity€ ! € ∂t p = RρT perfect gas Law! € d $ p ' j 2 & ) = + ......... energy equation! dt % ργ ( σ € € 3. APPLICATIONS of MHD! (i) MHD Models of Global Corona! Progressed from early potential models! Wiegelmann – sophisticated nonlinear fff! Mikic et al ! – cf full MHD model with eclipse structures:! Evolution global corona thro’ nonlinear fff! modelled for several solar cycles! "emergence new flux, diffusion, meridional flow, ! differential rotation! (Mackay & Van Ballegooijen) ! • deduce polar flux! • predict locations of most ! € "prominences as twisted flux ropes ! • locations of most ! € """prominence eruptions & cme’s! 3. APPLICATIONS of MHD! (ii) Models of Solar Wind! Progressed from early spherically symmetric ! """""& coronal hole models! Fast Solar Wind! – self-consistent wave turbulence (Cranmer07)! (cf evolution of MHD turbulence,! Marsch90, Tu & Marsch95)! Slow Solar Wind - ? Reconnection! e.g. S-web model: reconnection in ! a complex web of separatrices & QSL’s ! in coronal streamer belt (Titov et al, 11)! Eckart Marsch! Aspects of his approach (Liv. Rev, Marsch06):! (i)"Use key space missions (Helios, SUMER, Ulysses)! (ii) Coronal heating/solar wind acceleration a unity! (iii)"Take us out of MHD comfort zone! Science Highlights: ! • 3D proton distribution functions ! & turbulent spectra, 0.3-1 AU" (Marsch 82,90)! • 2-fluid/kinetic models of solar wind ! "(Tu & Marsch 97, Vocks & Marsch 02)! • Discover/model source fast wind (funnels) ! " (Wilhelm et al 98,00; Tu et al 05)! • Heating/accelerating corona by ! "cyclotron resce/re co n n waves (Marsch82,98; ! "" " Marsch & Tu97,01) Tperp (Araneda08, Bourouaine10)! 4. PLASMA MODELS! – govern struc./t-evol. of plasma:! (i) (Macroscopic) Fluid - motion of plasma element ! " " "- -> multi-fluid " """""""of velocity v(r,t) ! (ii) "(Microscopic" """""""""""") Kinetic – describes distribution! ! " " """"""""""of pcle velys within element! (iii)" Hybrid" """""""""""" (mixture)! ! 4.1. Motion Single-Particle in prescribed E(r,t), B(r,t)! du dr m = e(E + u × B), = u dt dt In uniform B, particle gyrates: ! mu⊥ eB """""helix gyroradius rg" = "", frequency"ω! g = eB m € E × B u = Add constant E, "helix has drift velocity! drift B2 € t-variation/gradients ⇒ other drifts! € € 4.2 Collisionless Kinetic Model [Microscopic]! Distribution function "fs(""r,u,t )! "is density of particles of species s in r,u space at time t! Suppose no collisions, no p’cles created/destroyed &! "interact only€ thro’ E(r,t), B(r,t)! Then Liouville’s theorem:! dfs ∂fs dr ∂fs du ∂fs ≡ + • + • = 0 dt ∂t dt ∂r dt ∂u ∂fs ∂fs es ∂fs or! + u • + (E + u × B) • = 0 ∂t ∂r ms ∂u € NB "– characs. are eqns p’cle motion! (Vlasov equation)! ""- but E,B determined by Maxwell’s eqns:! ∇ × E = −∂B/∂t, ∇ • εE = q, € where! q = ∑es ∫ f s du, j = ∑es ∫ f su du , −2 S S ∇ × B = j+ c ∂E/∂t, ∇ • B = 0, """charge density! set of nonlinear integro-differential eqns! € € 4.3 Add Collision Term to Kinetic Model! ∂fs ∂fs es ∂fs $ ∂fs ' + u • + (E + u × B) • = & ) ∂t ∂r ms ∂u % ∂t ( c Boltzmann eqn! NB:! €• In general involves 2-particle distrib fns" ⇒"" inf. hierarchy! • If no Coulomb collisions but turbce "⇒" effective colln term """"""" ! • Lorentz gas (scatter off heavy static ions) "! [RHS = −νc ( f S − f MAXn )] ⇒ BGK classical transport€ coeffs! (σ, κ, µ) """"""or neoclassical in inhomogeneous B! € • Fokker-Planck eqn (effect€ many long-range collisions)! τ (τ ) ⇒ electrons (ions) relax to€ Maxwellians in few ! ee ii """&! " Te"""⇒ Ti after ! (mi /me )τ ee € € € € € 4.4 Fluid Models (Macroscopic)! • Plasma – better to regard it as at least 2 fluids: electrons, ions! • ? Derive from distrib. fns "fs("""r,u,t) of collisionless plasma! nS = ∫ fS du density! vS = ∫ u fS du/nS bulk velocity! Take moments of Vlasov: ! ∂fs ∂fs es ∂fs € + u • + (E + u × B) • = 0 t r m u n ∂ ∂ s ∂ € × u and ∫ du € ∂ρS (i) n=0! du + ∇ • (ρS vS ) = 0 mass continuity -> v ?! ∫ ∂t s € € dvS (ii) n=1! ∫ mSu du ρ = −∇ • P + j × B + q E Momentum -> Ps? ! dt s s € pressure€ tensor! Ps = ms ∫ (u − vS )(u − vS ) f S (r,u,t)du ""- arises spatial element contains particles w. many different u ‘s! € € (iii)! ∫ mS (u − vS )(u − vS ) du eqn for Ps includes heat flow tensor ! ⇒ rd € """"""""Qs "(3 order)! € € € …… ⇒ infinite hierarchy of coupled eqns! To form set of fluid eqns – truncate hierarchy:! Often assume quasi-neutral(ne=ni), heat flux (Qs=0), isotropic (Ps=psI)! e.g. Consider plasma of two fluids (electrons & hydrogen ions):! € dv Sum of momm eqs: "ρ """"= −∇p + j × B , where "! dt ρ = ρe + ρi, p = pe + pi, v = (ρeve + ρivi )/ρ m ! Electron mom 1 generalised ! € E + v × B = (−∇pe + j × B) +ηj " "(m <<m ):! ene e i € Ohm’s law! el. pressure! Hall term! ηcollisional t a (imp for phen ηmicroturbulent € on ion scales)! • For this MHD form of gend Ohm law, derivation€ is rigorous ! € n • For more general forms (inertial terms), no rigorous deriv ! " " " " " " " "- so status of a “model eqn” "[Balescu,1988]! Several “Fluid” models of a plasma:! • (i) Ideal single-fluid MHD! d % p ( E + v × B = 0, ' * = 0 dt ' γ * when L0>> η / v 0 and L0>> ion scales ( r g!,λi ) & ρ ) • €(ii) In two-fluid collisionless MHD! # 2 & € d p B d # p & B compensates for lack of €collisions: ! % ll ( = 0, % ⊥ ( = 0 if collns weak! (r << λ ), dt % 3 ( dt % ρB( g C $ ρ ' $ ' gyro-radius restricts flow p’cles & ! p ≠ p⊥ ll (double-adiabatic CGL model)! € dρ dp & dv ) € = = 0, ( ρ = −∇p + j × B+ , • €(iii) Friedberg collisionless MHD! € dt dt ' dt *⊥ from guiding-centre theory! E + v × B = 0, ∇ • v = 0. ⊥ • (iv) Interaction plasma & electromagc waves! ""- -> collisionless fluid eqns (exact for cold plasma) ! € • (v) Electron MHD – describes electrons in the whistler regime Le<<L0<<Li! 4.5 Validity of MHD ! • At 1st, MHD no use for collisionless" "not treat particles! • But MHD describes large-scale dynamics with(out) collisions! less e.g. beyond 10R0 solar wind coll ,! """but MHD models describe global "T, v"", ρ, B quite well,! """incl. shocks, stream€ interactions, turbulence, …! • Vlasov Kinetic theory-most complete description colllessplasma! € """but mathy intractable/ rarely used for global models! """instead, often model shock structure/ p’cle accn/ """"evolution of distrib fns by wave-p’cle interactions! Why MHD so successful?! (i) ideal MHD embodies conservn mass, momn, energy! " " """"""""universal in colll/co ll less plasma! (ii) Gyro-motion prevents particles travelling ⊥ B ! ⇒ net effect described by MHD-like eqns! (iii) Often wave-p’cle interactions impede€ p’cle motion along B! (iv) In collless plasma with " " ! E × B u = ⇒ E + v × B = 0 € "E"× B"- drift dominant! drift B2 ⊥ (v)" Adding Lorentz force on individual p’cles !⇒ € F = qE + j × B, € where qE << j × B when udrift << c and qE << ∇p when λDebye << L0 € € ? Important modificns to MHD in Collisionless Plasma! • p not isotropic so need! p and p ⊥ ll • Viscous stress tensor anisotropic & depends on B ! • Ohm’s law generalises! % ( €m e ∂j 1 j E + v × B = 2 ' + ∇ • (vj+ jv)* + (j × B − ∇ • pe ) + e ne & ∂t ) ene σ -- all terms allow B to slip thro’ plasma,! """but el. inertia doesn’t produce dissipation! € """and Hall term frozen to els & = 0 at null! -- el inertia important if! L0 < λe = c /ω pe (electron inertial length) -- Hall term if! L0 < λi / MA = c /(ω pi MA ) 1/ 2 -- electron stress if! L0 < β rgi / MA € 1/ 2 -- collision term if! L0 < (β / MA )(λeλi /λmfp ) • But need€ kinetic theory to describe p’cle accn &! """modifications€ to distrib fn by wave-p’cle interactions! € Compare parameters in Corona & Magnetosphere! Parameter " "Corona (above a.r.) " "Magnetsph(plasma sheet)! n (m-3)" """"1015 " " """""105! T (K) " """"106" """ """ """ "107! B (tesla) " """10-2 " " """ """ "10-8! -1 5 Rgi (m) " """10 " " """ """ "10 ! 1 6 λion"inertial " (m) " ""10 " """""""10 ! 4" """ """ """ " 16 λmpf" (m) " """10 10 ! 8 7 € Global L0"(m)" ""10 " """ """ """ "10 ! -1 4 Lelectron inertia (m) " "10 " " """ """ "10 ! € 1 6 LHall (m) " """10 " """ """ """ "10 ! -3 5 Lelectron stress (m) " "10 " " """ """ "10 ! -7 -7! Lcollision (m)" """10 " " """ """ "10 On global scale ideal MHD valid,! As decrease L, Hall comes in 1st! 5. CONCLUSIONS! • Need range models - different problems! """""""- appreciate different assumptions! • MHD "- better than seems at 1st! " " " "– need understand validity of different versions! " " " "- need go beyond single-fluid routinely! • Kinetic – use insights of MHD –! """"- importance of bc’s/ macroscopic evolution! Eckart – thanks ! - prodding us go beyond MHD! - now time is ripe to do just that!.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us