Quantum Fields with Classical Interactions

Quantum Fields with Classical Interactions

Quantum fields with classical perturbations Jan Derezi´nski Dept. of Math. Methods in Phys., Faculty of Physics, University of Warsaw Hoza 74, 00-682 Warszawa, Poland email [email protected] September 13, 2018 Abstract The main purpose of these notes is a review of various models of Quan- tum Field Theory involving quadratic Lagrangians. We discuss scalar and 1 vector bosons, spin 2 fermions, both neutral and charged. Beside free the- ories, we study their interactions with classical perturbations, called, de- pending on the context, an external linear source, mass-like term, current or electromagnetic potential. The notes may serve as a first introduction to QFT. Contents 0 Introduction 7 1 Basic concepts 11 1.1 Minkowski space . 11 1.1.1 Coordinates in Minkowski space . 11 1.1.2 Causal structure . 12 1.1.3 Fourier transform . 12 arXiv:1307.1162v4 [math-ph] 5 May 2014 1.1.4 Lorentz and Poincar´egroups . 13 1.1.5 Double coverings of Lorentz and Poincar´egroups . 13 1.1.6 Complex Lorentz groups . 15 1.2 General concepts of quantum field theory . 16 1.2.1 Quantum mechanics . 16 1.2.2 Time reversal . 16 1.2.3 Relativistic quantum mechanics . 18 1.2.4 Haag-Kastler axioms for observable algebras . 19 1.2.5 Haag-Kastler axioms for field algebras . 20 1.2.6 Global symmetries . 21 1 1.2.7 Neutral quantum fields . 21 1.2.8 Wightman axioms for neutral fields . 22 1.2.9 Relationship between Haag-Kastler and Wightman axioms 23 1.2.10 Global symmetries in the Wightman formalism . 23 1.2.11 Charged fields . 24 1.2.12 Wightman axioms for neutral and charged fields . 25 1.2.13 U(1) symmetry . 26 1.2.14 Charge conjugation . 26 1.2.15 Parity invariance . 27 1.2.16 Time reversal invariance . 27 1.2.17 The CPT Theorem . 28 1.2.18 The CPT Theorem in a P and T -invariant theory . 28 1.2.19 N-point Wightman and Green's functions . 29 1.3 General scattering theory . 30 1.3.1 Time ordered exponential . 30 1.3.2 Heisenberg picture . 31 1.3.3 Time-dependent perturbations . 32 1.3.4 Time ordered Green's functions . 33 1.3.5 Adiabatic switching and the energy shift . 34 1.3.6 Adiabatic switching and Green's functions . 37 1.3.7 Adiabatic scatttering theory . 38 2 Neutral scalar bosons 39 2.1 Free neutral scalar bosons . 40 2.1.1 Special solutions and Green's functions . 40 2.1.2 Space of solutions . 42 2.1.3 Classical fields . 44 2.1.4 Poisson brackets . 45 2.1.5 Smeared fields . 45 2.1.6 Lagrangian formalism . 46 2.1.7 Stress-energy tensor . 47 2.1.8 Diagonalization of the equations of motion . 48 2.1.9 Plane waves . 49 2.1.10 Positive frequency space . 50 2.1.11 Quantization . 51 2.1.12 Quantization in terms of smeared fields . 53 2.1.13 Quantization in terms of C∗-algebras . 54 2.1.14 Two-point functions . 54 2.2 Neutral scalar bosons with a linear source . 55 2.2.1 Classical fields . 55 2.2.2 Lagrangian and Hamiltonian formalism . 56 2.2.3 Quantization . 57 2.2.4 Operator valued source . 58 2.2.5 Scattering operator . 59 2.2.6 Green's functions . 60 2.2.7 Path integral formulation . 61 2 2.2.8 Feynman rules . 62 2.2.9 Vacuum energy . 63 2.2.10 Problems with the scattering operator . 63 2.2.11 Energy shift and scattering theory for a stationary source 64 2.2.12 Travelling source . 65 2.2.13 Scattering cross-sections . 68 2.2.14 Inclusive cross-section . 68 2.3 Neutral scalar bosons with a mass-like perturbation . 70 2.3.1 Classical fields . 70 2.3.2 Lagrangian and Hamiltonian formalism . 71 2.3.3 Dynamics in the interaction picture . 71 2.3.4 Quantization . 72 2.3.5 Quantum Hamiltonian . 73 2.3.6 Path integral formulation . 74 2.3.7 Feynman rules . 74 2.3.8 Vacuum energy . 76 2.3.9 Pauli-Villars renormalization . 77 2.3.10 Renormalization of the vacuum energy . 78 2.3.11 Method of dispersion relations . 79 2.3.12 Wick rotation . 80 2.3.13 Dimensional renormalization . 81 2.3.14 Energy shift . 82 3 Massive photons 83 3.1 Free massive photons . 84 3.1.1 Space of solutions . 84 3.1.2 Classical 4-potentials . 84 3.1.3 Poisson brackets . 85 3.1.4 Smeared 4-potentials . 86 3.1.5 Lagrangian formalism and stress-energy tensor . 86 3.1.6 Diagonalization of the equations of motion . 88 3.1.7 Plane waves . 91 3.1.8 Positive frequency space . 91 3.1.9 Spin averaging . 92 3.1.10 Quantization . 92 3.2 Massive photons with an external 4-current . 94 3.2.1 Classical 4-potentials . 94 3.2.2 Lagrangian and Hamiltonian formalism . 95 3.2.3 Quantization . 96 3.2.4 Causal propagators . 98 3.2.5 Feynman rules . 99 3.2.6 Path integral formulation . 99 3.2.7 Energy shift . 101 3.3 Alternative approaches . 102 3.3.1 Classical 4-potentials without the Lorentz condition . 102 3.3.2 The Lorentz condition . 103 3 3.3.3 Diagonalization of the equations of motion . 104 3.3.4 Positive frequency space . 106 3.3.5 \First quantize, then reduce" . 107 3.3.6 Quantization without reduction on a positive definite Hilbert space . 107 3.3.7 The Gupta-Bleuler approach . 108 4 Massless photons 109 4.1 Free massless photons . 110 4.1.1 Space of solutions and the gauge invariance . 110 4.1.2 Classical 4-potentials . 112 4.1.3 Smeared 4-potentials . 113 4.1.4 Lagrangian formalism and the stress-energy tensor . 113 4.1.5 Diagonalization of the equations of motion . 114 4.1.6 Positive frequency space . 115 4.1.7 Spin averaging . 116 4.1.8 Quantization . 116 4.1.9 Quantization in terms of C∗-algebras . 118 4.2 Massless photons with an external 4-current . 118 4.2.1 Classical fields . 118 4.2.2 Lagrangian and Hamiltonian formalism . 120 4.2.3 Quantization . 121 4.2.4 Causal propagators . 122 4.2.5 Path integral formulation . 122 4.2.6 The m ! 0 limit . 123 4.2.7 Current produced by a travelling particle . 124 4.2.8 Energy shift . 125 4.3 Alternative approaches . 125 4.3.1 Manifestly Lorentz covariant formalism . 125 4.3.2 The Lorentz condition . 126 4.3.3 Positive frequency space . 127 4.3.4 \First quantize, then reduce" . 128 4.3.5 Quantization with a subsidiary condition . 128 4.3.6 The Gupta-Bleuler approach . 129 5 Charged scalar bosons 129 5.1 Free charged scalar bosons . 130 5.1.1 Classical fields . 130 5.1.2 Smeared fields . 131 5.1.3 Lagrangian formalism . 132 5.1.4 Classical 4-current . 133 5.1.5 Stress-energy tensor . 134 5.1.6 Diagonalization of the equations of motion . 134 5.1.7 Plane waves . 136 5.1.8 Positive and negative frequency subspace . 137 5.1.9 Quantization . 138 4 5.1.10 Quantum 4-current . 140 5.1.11 Quantization in terms of smeared fields . 142 5.2 Charged scalar bosons in an external 4-potential . 143 5.2.1 Classical fields . 143 5.2.2 Lagrangian and Hamiltonian formalism . 144 5.2.3 Classical discrete symmetries . 145 5.2.4 Quantization . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    211 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us