Teleparallel Gravity in Five Dimensional Theories

Teleparallel Gravity in Five Dimensional Theories

Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary RESCEU APCosPA Summer School 2015 Teleparallel Gravity in Five Dimensional Theories Reference: Phys. Lett. B 737, 248 (2014), Class. Quant. Grav. 31 (2014) 185004 Ling-Wei Luo Institute of Physics, National Chiao Tung University Collaborators: Chao-Qiang Geng (NTHU/NCTS), Chang Lai (CQUPT, China), Huan Hsin Tseng (NTHU/Tufts Univ.), August 2, 2015 @ Nikko city, Tochigi Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 0/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Outline 1 Teleparallel Gravity 2 Five-Dimensional Geometry 3 Braneworld Scenario 4 Kaluza-Klein Theory 5 Summary Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 1/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Outline 1 Teleparallel Gravity 2 Five-Dimensional Geometry 3 Braneworld Scenario 4 Kaluza-Klein Theory 5 Summary Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 1/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Absolute Parallelism The orthonormal frame in Weitzenb¨ockgeometry W4 i j gµν = ηij eµ eν with ηij = diag(+1; −1; −1; −1) : Metric compatible condition r gµν = 0: i ρ i i j d eµ − Γµ eρ + ! j eµ = 0 and !ij = − !ji : Absolute parallelism for parallel vectors (Cartan 1922/Eisenhart 1925) i i i ρ rν eµ = @ν eµ − eρ Γµν = 0 : w ρ ρ i =) Weitzenb¨ockconnection Γµν = ei @ν eµ − !ijµ = 0. σ σ j i Curvature-free R ρµν (Γ) = ei eρR jµν (!) = 0. w w i i i i i Torsion tensor T µν ≡ Γνµ − Γµν = @µeν − @ν eµ. Contorsion tensor 1 Kρ = − (T ρ − T ρ − T ρ ) = −K ρ : µν 2 µν µ ν ν µ µ ν Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 2/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Geometrical Meaning of Torsion Torsion free: a tangent vector does not rotate when we parallel transport it. (P.371, John Baez and Javier P. Muniain, \Gauge Fields, Knots and Gravity," 1994) T (u; v) = ruv − rvu − [u; v] | {z } vanished in coordinate space Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 3/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Teleparallel Equivalent to GR in W4 Decomposition of the Weitzenb¨ockconnection w ρ ρ ρ Γµν = fµν g + K µν ; Teleparallel Equivalent to GR (GRk or TEGR) in W4 based on the ν the relation (Tµ := T νµ) µ µ R(Γ) = R~(e)+ T − 2 r~ µT = 0 =)− R~(e)= T − 2 r~ µT : Torsion Scalar (Einstein 1929) 1 1 1 T ≡ T ρ T µν + T ρ T νµ − T ν T σµ = T i S µν 4 µν ρ 2 µν ρ µν σ 2 µν i µν µν µ σν ν σµ νµ Sρ ≡ K ρ + δρ T σ − δρ T σ = −Sρ is superpotential . The TEGR action 1 Z p S = d4x e T (e = −g) : TEGR 2κ Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 4/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Motivation Fundamental fields inGR: Metric tensor gµν ρ 1 ρσ =) Levi-Civita connection fµν g = 2 g @µgσν + @ν gµσ − @σgµν Fundamental field in Teleparallel Gravity: i Veierbein fields eµ ρ ρ i =) Weitzenb¨ockconnection Γµν = ei @ν eµ. Question Does there exist any different effect coming from the extra dimension? Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 5/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Outline 1 Teleparallel Gravity 2 Five-Dimensional Geometry 3 Braneworld Scenario 4 Kaluza-Klein Theory 5 Summary Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 5/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Hypersurface in GR Gauss normal coordinate with the signature 5 _ 5 e 5 _ _ e (+ − − − "). e The tensor BMN := −r~ M nN is defined by the unit normal vector of the hypersurface n V M=M_ MN expansion θ = h BMN ; 1 shear σ = B − θh ; MN (MN) 3 MN twist !MN = B[MN] −! 0 (Hypersurface orthogonal) ; where hMN =g ¯MN − " nM nN the projection operator. Gauss's equation µ µ µ µ R¯ νρσ = R νρσ + "(K σ Kνρ − K ρ Kνσ) Extrinsic curvature ~ 1 5 Kµν = B(µν) = −" rµn · eν = −" 2 Lngµν = " fµν g n5 Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 6/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary 5-Dimension Teleparallelism An embedding: W4 −! W5. In Gauss normal coordinate g (xµ; y) 0 g¯ = µν : MN 0 εφ2(xµ; y) The 5D torsion scalar in the orthonormal frame (5) 1 i5^j j5^i j i 5^ j k5^ T = T¯ + T¯ ^ T¯ + T¯ ^ T¯ + 2 T¯ j T¯ ^ − T¯ ^ T¯ k : |{z} 2 i5j i5j i5 5j induced 4D torsion scalar i 5^ The non-vanishing components of vielbein are eµ and e5 Projection of the torsion tensor ρ ρ T¯ µν = T µν (purely 4-dimensional object) Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 7/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary i −! µ ; i −! 5 × ; 5^ −! µ × ; 5^ −! 5 : The 5D torsion scalar in the coordinate frame 1 (5)T = T¯ + T¯ T¯ρ5ν + T¯ T¯ν5ρ + 2 T¯σ µ T¯5 − T¯ν T¯σ5 : 2 ρ5ν ρ5ν σ µ5 5ν σ Note: ρ ρ ρ In general, induced torsion T¯ µν = T µν + C¯ µν , where 5^ C¯ µν z }| { C¯ρ =e ¯ρ(@ e¯5^ − @ e¯5^ ) : µν 5^ µ ν ν µ ¯5^ 5^ 5^ M N 5^ C µν = Γνµ − Γµν = hµ hν T MN ∼ !µν is related to the extrinsic torsion or twist !µν . Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 8/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Outline 1 Teleparallel Gravity 2 Five-Dimensional Geometry 3 Braneworld Scenario 4 Kaluza-Klein Theory 5 Summary Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 8/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Braneworld Theory The vielbein in the Gauss normal coordinate ei (xµ; y) 0 e¯I = µ : M 0 φ(xµ; y) The induced torsion scalar T¯ = T . The bulk action in the orthonormal frame Z 1 5 1 i5j j5i Sbulk = dvol T + (T¯i5j T¯ + T¯i5j T¯ ) 2κ5 2 2 + e (φ) T¯a − T¯ T¯5 with T¯ := T¯b : φ i 5 A bA Note: According to [Ponce de Leon 2001], the induced-matter theory (RAB = 0, Wesson 1998) can be regarded as a mathematically equivalent formulation of the braneworld theory. Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 9/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Assume the bulk metric g¯ is maximally symmetric 3-space with spatially flat (k = 0) 2 2 2 2 g¯MN = diag 1; −a (t; y); −a (t; y); −a (t; y); " φ (t; y) ; #¯0^ = dt ; #¯a = a(t; y) dxα ; #¯5^ = φ(t; y) dy : First Cartan structure equation a_ a0 φ_ T¯0^ = d¯#¯0^ = 0; T¯a = #¯0^ ^ #¯a + #¯5^ ^ #¯a; T¯5^ = #¯0^ ^ #¯5^ ; a aφ φ Torsion 5-form reads " !# 3 + 9 " a02 a_ φ_ T¯ = T + + 6 dvol5 : φ2 a2 a φ Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 10/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary ¯ ¯B ¯ The energy-momentum tensor is ΣA = TA ?¯#B ¯B ¯B ¯B TA (t; y) = TA bulk + TA brane ; δ(y) T¯B = diag(ρ(t); −P (t); −P (t); −P (t); 0) ; A brane φ ¯B Λ5 B TA bulk = ηA : κ5 We have the 0^0^-component equation ! a_ 2 a_ φ_ 1 a00 a0 φ0 1 a02 κ + − − − = 5 T¯ : a2 a φ φ2 a a φ φ2 a2 3 0^0^ Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 11/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary The scale factor a(t; y) = θ(y)a(+)(t; y) + θ(−y)a(−)(t; y) =) a00(t; y) = δ(y)[a0](t; 0) +a ~00(t; y) with [a0] = a(+)0 − a(−)0 : The junction condition: κ symmetry κ [a0](t; 0) = − 5 ρ a (t) φ (t) =======Z2 ) a0(t; 0) = − 5 ρ a (t) φ (t) : 3" 0 0 6" 0 0 Modified Friedmann equation on the brane 2 2 a_ 0(t) a¨0(t) κ5 k5 ¯ 2 + = − ρ(t)(ρ(t) + 3P (t)) − 2 T55 bulk : a0(t) a0(t) 36 3φ0(t) =) Coincides with GR! (See Binetruy, Deffayet and Langlois 2000), but the junction condition comes from torsion itself! Remark: T¯ = T a purely 4-dimensional object in Gauss normal coordinate. =) No extrinsic torsion contribution on the brane in TEGR. Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 12/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Outline 1 Teleparallel Gravity 2 Five-Dimensional Geometry 3 Braneworld Scenario 4 Kaluza-Klein Theory 5 Summary Ling-Wei Luo RESCEU APCosPA Summer School 2015 @ Nikko City, Tochigi 12/ 19 Outline Teleparallel Gravity Five-Dimensional Geometry Braneworld Scenario Kaluza-Klein Theory Summary Kaluza-Klein Theory KK ansatz: Cylindrical condition (no y dependency) Compactify to S1 and only consider zeroKK mode 1 The manifold is M4 × S (y = r θ) M The metric is reduced to g (xµ) 0 g¯ = µν : MN 0 −φ2(xµ) ρ 5 The residual components are T µν and T¯ µ5 = @µφ/φ.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    37 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us