Towards a Model Theory for Transseries

Towards a Model Theory for Transseries

Towards a model theory for transseries by Matthias Aschenbrenner (UCLA) Lou van den Dries (Univ. of Illinois @ Urbana-Champaign) Joris van der Hoeven (CNRS, École polytechnique) Luminy, 08/06/2015 http://www.TeXmacs.org What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ ex + e ··· + ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ x ex + e + e x ··· + ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ x x ex + e + e + e x x 2 ··· + ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ x x x e e x e + x + 2 + 2 e + e x ··· + e ··· + log x ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ ex ex x ex + + + 2 ex + e + e x x 2 ··· + e x ··· + log x ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ x x x x ex + e + e + 2 ex + e + e + e x x 2 ··· + e x x 2 ··· + log x ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ x x x x x e e x e e e + x + 2 + 2 e + x + 2 + √x + e x ··· + e x ··· +e ··· + log x ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ ex ex ex ex ex + + + 2 ex + + + plog x +··· e x x 2 ··· + e x x 2 ··· +e√x +e + log x ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ x x x x x e e x e e plog log x +··· e + + + 2 e + + + x plog x +e e x x 2 ··· + e x x 2 ··· +e√ +e + log x ··· What is a transseries? 2/22 1 2 3456 78910111213141516171819 20 21 22 (x 1) ≻ x x x x x e e x e e plog log x +··· e + + + 2 e + + + x plog x +e e x x 2 ··· + e x x 2 ··· +e√ +e + log x ··· Dahn & Göring • Écalle • Detailed treatment in LNM 1888: “Transseries and Real Differential Algebra” • More examples 3/22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 1 2 e 3 e 1 − − = 1+ x − + x − + x − + x − + x − − + 1 x 1 x e − − ··· −x 1 1 1 x e 2x − − = 1+ + + +e− +2 + +e− + 1 x 1 +e x x x 2 x − ··· ··· ··· −x ex e = 1 1 + 2 6 + 24 120 + − x x − x 2 x 3 − x 4 x 5 − x 6 ··· R √ x (log x −1) √ x (log x −1) √ x (log x −1) Γ(x) = 2 p e + 2 p e + 2 p e + x 1/2 12 x 3/2 288 x 5/2 ··· x x x ζ(x) = 1+2− +3− +4− + ··· ϕ(x) = 1 + ϕ(x π)= 1 + 1 + 1 + 1 + x x x π x π2 x π3 ··· 1 log2 x 1 1 1 1 ψ(x) = + ψ(e )= + 2 + 4 + 8 + x x elog x elog x elog x ··· The exponential field T of transseries 4/22 123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Transseries are transfinite series f = fm m (T: set of transmonomials, coefficients fm R) ∈ mXT ∈ ex ex ex x + + + π 1 1 = 3ee +e log x log2 x log3 x ··· x 11 +7 + + + + − − x x log x x(log x)2 ··· = f + f + f ≻ ≍ ≺ex ex ex x + + + f = 3ee +e log x log2 x log3 x ··· x 11 ≻ − − f = 7 ≍ π 1 1 f = + + + ≺ x x log x x(log x)2 ··· The exponential field T of transseries 4/22 123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Transseries are transfinite series f = fm m (T: set of transmonomials, coefficients fm R) ∈ mXT ∈ ex ex ex x + + + π 1 1 = 3ee +e log x log2 x log3 x ··· x 11 +7 + + + + − − x x log x x(log x)2 ··· = f + f + f ≻ ≍ ≺ex ex ex x + + + f = 3ee +e log x log2 x log3 x ··· x 11 ≻ − − f = 7 ≍ π 1 1 f = + + + ≺ x x log x x(log x)2 ··· Transmonomials and exponential structure T = exp T ≻ T = f T: f = f ≻ { ∈ ≻ } exp f = (exp f )(exp f )(exp f ) ≻ ≍ ≺ 1 2 1 3 exp f = 1+ f + /2 f + /6 f + . ≺ ≺ ≺ ≺ ··· T as an ordered differential field 5/22 1234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Differentiation x ′ = 1 f f (e )′ = f ′ e fm m ′ = fm m′ mXT mXT ∈ ∈ T as an ordered differential field 5/22 1234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Differentiation x ′ = 1 f f (e )′ = f ′ e fm m ′ = fm m′ mXT mXT ∈ ∈ Ordering f > 0 ( g T, g 2 = f ) c(f ) > 0 ⇐⇒ ∃ ∈ ⇐⇒ ex ex ex x + + + π 1 c 3 ee +e log x log2 x log3 x ··· x 11 +7+ + + = 3 − − x x log x ··· − T as an ordered differential field 5/22 1234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Differentiation x ′ = 1 f f (e )′ = f ′ e fm m ′ = fm m′ mXT mXT ∈ ∈ Ordering f > 0 ( g T, g 2 = f ) c(f ) > 0 ⇐⇒ ∃ ∈ ⇐⇒ ex ex ex x + + + π 1 c 3 ee +e log x log2 x log3 x ··· x 11 +7+ + + = 3 − − x x log x ··· − Valuation = f T: c R>, f 6 c O { ∈ ∃ ∈ | | } = f T: c R>, f < c O { ∈ ∀ ∈ | | } / = R O O ∼ T as an ordered differential field 5/22 1234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Differentiation x ′ = 1 f f (e )′ = f ′ e fm m ′ = fm m′ mXT mXT ∈ ∈ Ordering f > 0 ( g T, g 2 = f ) c(f ) > 0 ⇐⇒ ∃ ∈ ⇐⇒ ex ex ex x + + + π 1 c 3 ee +e log x log2 x log3 x ··· x 11 +7+ + + = 3 − − x x log x ··· − Valuation = f T: c R>, f 6 c O { ∈ ∃ ∈ | | } = f T: c R>, f < c O { ∈ ∀ ∈ | | } / = R O O ∼ v(f ) > v(g) f 4 g f g v(f ) > v(g) ⇐⇒ f g ⇐⇒ f ∈Og ⇐⇒ ≺ ⇐⇒ ∈ O Remarkable closure properties 6/22 12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Basic closure properties T is Liouville closed (i.e. real closed, stable under integration and exponential integration). Remarkable closure properties 6/22 12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Basic closure properties T is Liouville closed (i.e. real closed, stable under integration and exponential integration). Factorization of linear differential operators [vdH] Any linear differential operator L T[∂] can be factored into operators of order at most two. ∈ Remarkable closure properties 6/22 12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Basic closure properties T is Liouville closed (i.e. real closed, stable under integration and exponential integration). Factorization of linear differential operators [vdH] Any linear differential operator L T[∂] can be factored into operators of order at most two. ∈ Differential intermediate value theorem [vdH] (r ) Given a differential polyonomial P T Y (i.e. P = P(Y , Y ′, ..., Y )) and f < g in T such that P(f ) P(g) < 0, there exists an∈y { T}with f < y < g and P(y)=0. ∈ Remarkable closure properties 6/22 12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Basic closure properties T is Liouville closed (i.e. real closed, stable under integration and exponential integration). Factorization of linear differential operators [vdH] Any linear differential operator L T[∂] can be factored into operators of order at most two. ∈ Differential intermediate value theorem [vdH] (r ) Given a differential polyonomial P T Y (i.e. P = P(Y , Y ′, ..., Y )) and f < g in T such that P(f ) P(g) < 0, there exists an∈y { T}with f < y < g and P(y)=0. ∈ Newtonianity [vdH], differential analogue of henselian fields Any quasi-linear differential equation with asymptotic side-condition P(y)=0, y v ≺ admits a solution (P T Y , v T ). ∈ { } ∈ ∪{∞} Remarkable closure properties 6/22 12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Basic closure properties T is Liouville closed (i.e. real closed, stable under integration and exponential integration). Factorization of linear differential operators [vdH] Any linear differential operator L T[∂] can be factored into operators of order at most two. ∈ Differential intermediate value theorem [vdH] (r ) Given a differential polyonomial P T Y (i.e. P = P(Y , Y ′, ..., Y )) and f < g in T such that P(f ) P(g) < 0, there exists an∈y { T}with f < y < g and P(y)=0. ∈ Newtonianity [vdH], differential analogue of henselian fields Any quasi-linear differential equation with asymptotic side-condition P(y)=0, y v ≺ admits a solution (P T Y , v T ). ∈ { } ∈ ∪{∞} H-fields 7/22 123456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Definition.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    68 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us