Statistical Mechanics of Nonequilibrium Liquids

Statistical Mechanics of Nonequilibrium Liquids

statistical mechanics of nonequilibrium liquids statistical mechanics of nonequilibrium liquids Denis J. evans | Gary P. Morriss Published by ANU E Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] This title is also available online at: http://epress.anu.edu.au/sm_citation.html Previously published by Academic Press Limited National Library of Australia Cataloguing-in-Publication entry Evans, Denis J. Statistical mechanics of nonequilibrium liquids. 2nd ed. Includes index. ISBN 9781921313226 (pbk.) ISBN 9781921313233 (online) 1. Statistical mechanics. 2. Kinetic theory of liquids. I. Morriss, Gary P. (Gary Phillip). II. Title. 530.13 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design by Teresa Prowse Printed by University Printing Services, ANU First edition © 1990 Academic Press Limited This edition © 2007 ANU E Press Contents Preface ..................................................................................................... ix Biographies ............................................................................................... xi List of Symbols ....................................................................................... xiii 1. Introduction ......................................................................................... 1 References ........................................................................................ 10 2. Linear Irreversible Thermodynamics ................................................ 11 2.1 The Conservation Equations ........................................................ 11 2.2 Entropy Production .................................................................... 17 2.3 Curie's Theorem .......................................................................... 20 2.4 Non-Markovian Constitutive Relations: Viscoelasticity .................. 27 References ........................................................................................ 32 3. The Microscopic Connection .............................................................. 33 3.1 Classical Mechanics ..................................................................... 33 3.2 Phase Space ................................................................................ 42 3.3 Distribution Functions and the Liouville Equation ........................ 43 3.4 Ergodicity, Mixing and Lyapunov Exponents ............................... 51 3.5 Equilibrium Time Correlation Functions ....................................... 56 3.6 Operator Identities ...................................................................... 59 3.7 The Irving-Kirkwood Procedure .................................................. 63 3.8 Instantaneous Microscopic Representation of Fluxes ..................... 69 3.9 The Kinetic Temperature ............................................................. 73 References ........................................................................................ 74 4. The Green Kubo Relations ................................................................. 77 4.1 The Langevin Equation ............................................................... 77 4.2 Mori-Zwanzig Theory ................................................................. 80 4.3 Shear Viscosity ........................................................................... 84 4.4 Green-Kubo Relations for Navier-Stokes Transport Coefficients ...................................................................................... 89 References ........................................................................................ 92 5. Linear Response Theory ..................................................................... 93 5.1 Adiabatic Linear Response Theory ............................................... 93 5.2 Thermostats and Equilibrium Distribution Functions .................... 98 5.3 Isothermal Linear Response Theory ............................................ 108 5.4 The Equivalence of Thermostatted Linear Responses ................... 112 References ...................................................................................... 115 6. Computer Simulation Algorithms .................................................... 117 6.1 Introduction ............................................................................. 117 v Statistical Mechanics of Nonequilibrium Liquids 6.2 Self Diffusion ............................................................................ 124 6.3 Couette Flow and Shear Viscosity ............................................... 128 6.4 Thermostatting Shear Flows ....................................................... 142 6.5 Thermal Conductivity ............................................................... 145 6.6 Norton Ensemble Methods ........................................................ 148 6.7 Constant-Pressure Ensembles ..................................................... 152 6.8 Constant Stress Ensemble .......................................................... 155 References ...................................................................................... 163 7. Nonlinear Response Theory ............................................................. 167 7.1 Kubo's Form for the Nonlinear Response .................................... 167 7.2 Kawasaki Distribution Function ................................................. 168 7.3 The Transient Time Correlation Function Formalism .................... 172 7.4 Trajectory Mappings ................................................................. 176 7.5. Numerical Results for the Transient Time-Correlation Function ........................................................................................ 183 7.6. Differential Response Functions ................................................ 188 7.7 Numerical Results for the Kawasaki Representation ..................... 194 7.8 The Van Kampen Objection to Linear Response Theory ............... 198 References ...................................................................................... 207 8. Time Dependent Response Theory ................................................... 209 8.1 Introduction ............................................................................. 209 8.2 Time Evolution of Phase Variables .............................................. 209 8.3 The Inverse Theorem ................................................................. 211 8.4 The Associative Law and Composition Theorem .......................... 214 8.5 Time Evolution of the Distribution Function ............................... 216 8.6 Time Ordered Exponentials ........................................................ 217 8.7 Schrödinger and Heisenberg Representations ............................. 218 8.8 The Dyson Equation .................................................................. 220 8.9 Relation Between p- and f- Propagators ...................................... 221 8.10 Time Dependent Response Theory ............................................ 223 8.11 Renormalisation ...................................................................... 226 8.12 Discussion ............................................................................... 228 References ...................................................................................... 229 9. Steady State Fluctuations .................................................................. 231 9.1 Introduction ............................................................................. 231 9.2 The Specific Heat ...................................................................... 232 9.3 The Compressibility and Isobaric Specific Heat ........................... 237 9.4 Differential Susceptibility .......................................................... 239 9.5 The Inverse Burnett Coefficients ................................................ 242 References ...................................................................................... 244 vi Statistical Mechanics of Nonequilibrium Liquids 10. Towards a Thermodynamics of Steady States .................................. 245 10.1 Introduction ............................................................................ 245 10.2 Chaotic Dynamical Systems ...................................................... 247 10.3 The Characterization of Chaos .................................................. 258 10.4 Chaos in Planar Couette Flow ................................................... 267 10.5 Green's Expansion for the Entropy ........................................... 281 References ...................................................................................... 291 Index ..................................................................................................... 295 vii Preface During the 1980's there have been many new developments regarding the nonequilibrium statistical mechanics of dense classical systems. These developments have had a major impact on the computer simulation methods used to model nonequilibrium fluids. Some of these new algorithms are discussed in the recent book by Allen and Tildesley, Computer Simulation of Liquids. However that book was never intended to provide a detailed statistical mechanical backdrop to the new computer algorithms. As the authors commented in their preface, their main

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    318 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us