Structure of the Lithosphere Beneath the Colorado Rocky Mountains Using Multiple Geophysical Datasets

Structure of the Lithosphere Beneath the Colorado Rocky Mountains Using Multiple Geophysical Datasets

Structure of the lithosphere beneath the Colorado Rocky Mountains using multiple geophysical datasets Jonathan MacCarthy Geophysics Program, EES Department, NM Tech The Aspen anomaly is a low velocity (-4.5% Vs and -2.5% Vp) upper mantle feature that approximately underlies the highest elevations of the Colorado Rocky Mountains. It is geographically associated with Proterozoic structure in the lithosphere underlying the Colorado Mineral Belt. The coincidence of high topography, evidence of Cenozoic uplift, slow mantle velocities, magmatism, and possible inherited Proterozoic lithospheric structure and associated rheological weakness, together suggest that the Aspen anomaly may be a significant mantle geodynamic influence on the evolution of the central Colorado Rocky Mountains through to the present day. Competing end-member models for the origin of the anomaly are: 1) upwelling asthenosphere associated with Cenozoic mantle modification, and 2) thermal, rheological, and/or compositional variations in the lithosphere resulting from reactivation of much older lithospheric structures. Hybrid models involving interaction between recent mantle reorganization and older lithospheric flaws are also possible. In August of 2008, we deployed 59 IRIS PASSCAL broadband seismographs above the Aspen anomaly with a mean station spacing of 26 km, which will remain in place until October 2009. This IRIS PASSCAL deployment was embedded within the 70-km spacing USArray Transportable array and 4 NEIC sites. In total, this composite array is 94 seismic sites which will provide improved resolution to transition zone depths beneath the Colorado Rockies. We report on resolution tests for seismic and joint seismic/gravity inversion and results from early data from this experiment in the context of Aspen anomaly hypotheses and predictions for three-dimensional upper-mantle velocity heterogeneity. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us