On the Apostol-Bernoulli Polynomials

On the Apostol-Bernoulli Polynomials

CEJM 2(4) 2004 509{515 On the Apostol-Bernoulli Polynomials Qiu-Ming Luo¤ Department of Mathematics, Jiaozuo University, Jiaozuo City, Henan 454003, The People's Republic of China Received 19 July 2001; accepted 23 May 2003 Abstract: In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Paci¯c J. Math., 1 (1951), 161{167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications. °c Central European Science Journals. All rights reserved. Keywords: Bernoulli numbers, Bernoulli polynomials, Apostol-Bernoulli numbers, Apostol- Bernoulli polynomials, Gaussian hypergeometric functions, Stirling numbers of the second kind, Hurwitz Zeta functions, Lerch functional equation MSC (2000): Primary: 11B68; Secondary: 33C05, 11M35, 30E20 1 Introduction An analogue of the classical Bernoulli polynomials were de¯ned by T. M. Apostol (see [1]) when he studied the Lipschitz-Lerch Zeta functions. We call this polynomials the Apostol-Bernoulli polynomials. First we rewrite Apostol's de¯nitions below De¯nition 1.1. Apostol-Bernoulli polynomials Bn(x; ¸) are de¯ned by means of the generating function (see [1, p.165 (3.1)] or [4, p.83]) 1 zexz zn = B (x; ¸) ; (jz + ln ¸j < 2¼) (1) ¸ez ¡ 1 n n! n=0 X setting ¸ = 1 in (1), Bn(x) = Bn(x; 1) are classical Bernoulli polynomials. ¤ [email protected] 510 Q.-M. Luo / Central European Journal of Mathematics 2(4) 2004 509{515 De¯nition 1.2. Apostol-Bernoulli numbers Bn(¸) := Bn(0; ¸) are de¯ned by means of the generating function 1 z zn = B (¸) ; (jz + ln ¸j < 2¼) (2) ¸ez ¡ 1 n n! n=0 X setting ¸ = 1 in (2), Bn = Bn(1) are classical Bernoulli nunbers. T.M.Apostol not only gave elementary properties of polynomials Bn(x; ¸) in [1], but also obtained the recursion formula for the set of numbers Bn(¸) using the Stirling num- bers of the second kind (see [1, p. 166 (3.7)]) as follows n¡1 k k ¡1¡k Bn(¸) = n (¡1) k!¸ (¸ ¡ 1) S(n ¡ 1; k); (n 2 N0; <(¸) > 0; ¸ =6 1) (3) k X=1 where S(n; k) denote the Stirling numbers of the second kind which are de¯ned by means of the following expansion (see [3, p.207, Theorem B]) n x xn = k!S(n; k): (4) k k X=0 µ ¶ By applying binomial series expansion and Leibniz's rule, we ¯rst obtain the repre- sentation of the polynomials Bn(x; ¸) involving the Gaussian hypergeometric functions, and thereout deduce Apostol's formula (3); afterward we prove Theorem 3.1 using Lerch functional equation with related Hurwitz Zeta function. Furthermore we show that the main result in [9, p.1529, Theorem A] is only a special case of Theorem 3.1. 2 Apostol-Bernoulli Polynomials and Gaussian Hypergeometric functions Theorem 2.1. If n is a positive integer and <(¸) > 0; ¸ =6 1 are complex numbers, then we have n¡ l 1 n ¡ 1 l B (x; ¸) = n ¸l(¸ ¡ 1)¡l¡1 (¡1)j jl(x + j)n¡l¡1 n l j l j=0 X=0 µ ¶ X µ ¶ £ F [l ¡ n + 1; l; l + 1; j=(x + j)] (5) where F [a; b; c; z] denotes Gaussian hypergeometric functions de¯ned by (cf. [5, p.44 (4)]) 1 (a) (b) zn F [a; b; c; z] := n n ; jzj < 1 (6) (c)n n! n=0 X ¡(¸+n) where (¸)0 = 1; (¸)n = ¸(¸ + 1) ¢ ¢ ¢ (¸ + n ¡ 1) = ¡(¸) ; (n ¸ 1). Q.-M. Luo / Central European Journal of Mathematics 2(4) 2004 509{515 511 Proof 2.2. We di®erentiate both sides of (1) with respect to the variable z. Applying Leibniz's rule yields zexz d B (x; ¸) =Dn ; D = : n z ¸ez ¡ 1 z dz ½ ¾¯z=0 n ¯ ¡1 (7) ¡1 ¯n n¡k k¡1 ¸ z =(¸ ¡ 1) ¯ kx Dz (e ¡ 1) + 1 : k ¸ ¡ 1 k=0 µ ¶ ½· ¸ ¾¯z=0 X ¯ ¯ Since binomial series expansion ¯ 1 (1 + w)¡1 = (¡w)l; jwj < 1 (8) l X=0 ¸ z setting w = ¸¡1 (e ¡ 1), we have n k¡ n 1 ¸ l B (x; ¸) = (¸ ¡ 1)¡1 kxn¡k Dk¡1f(ez ¡ 1)lgj : (9) n k 1 ¡ ¸ z z=0 k l X=0 µ ¶ X=0 µ ¶ By the de¯nition of Stirling numbers of the second kind (see [5, p.58 (15)]) 1 zr (ez ¡ 1)l = l! S(r; l) (10) r! r l X= yields n k¡ n 1 B (x; ¸) = k (¡1)l¸l(¸ ¡ 1)¡l¡1l!S(k ¡ 1; l)xn¡k: (11) n k k l X=1 µ ¶ X=0 We change sum order of k and l, and using the formula below (see [5, p.58 (20)]) k 1 k S(n; k) = (¡1)k¡j jn (12) k! j j=0 X µ ¶ we obtain n¡ l n¡l¡ 1 l 1 n ¡ 1 j k B (x; ¸) = n ¸l(¸ ¡ 1)¡l¡1xn¡k¡l¡1 (¡1)j jl : (13) n j n ¡ k ¡ 2 x l j=0 k X=0 X µ ¶ X=0 µ ¶µ ¶ Applying (6) to (13) readily yields n¡ 1 n ¡ 1 B (x; ¸) = n ¸l(¸ ¡ 1)¡l¡1xn¡k¡l¡1 n l l=0 µ ¶ Xl l £ (¡1)j jl:F [l ¡ n + 1; 1; l + 1; ¡j=x] (14) j j=0 X µ ¶ 512 Q.-M. Luo / Central European Journal of Mathematics 2(4) 2004 509{515 Finally, we apply the known transformation [10, 15.3.4] F [a; b; c; z] = (1 ¡ z)¡aF [a; c ¡ b; c; z=(z ¡ 1)]; and (2.2) immediately obtain (5). Remark 2.3. H .M. Srivastava and P. G Todorov considered earlier the formula of the generalized Bernoulli polynomials (see [6, p.510 (3)]), for ® = 1, which is a complemen- tarity of our result (5), for ¸ = 1, as follows k n k! k B (x) = n (¡1)j j2k(x + j)n¡k n k=0 k (2k)! j j=0 µ ¶ X µ ¶ P£ F [k ¡ n; k ¡ 1; 2k + 1; j=(x + j)]: (15) Remark 2.4. We will also apply the representation (5) in order to derive an interesting special case considered by T. M. Aspotol in (3). By the well-known formula [10, 15.1.20] ¡(c)¡(c ¡ a ¡ b) F [a; b; c; 1] = (c =6 0; ¡1; ¡2; : : : ; <(c ¡ a ¡ b) > 0); ¡(c ¡ a)¡(c ¡ b) upon setting a = l ¡ n + 1; b = l, and c = l + 1 yields ¡ n ¡ 1 1 F [l ¡ n + 1; l; l + 1; 1] = ; (0 · l · n): (16) l µ ¶ In view of (16), the special case of our formula (5) when x = 0 gives Apostol's represen- tation (3). Remark 2.5. The formula of classical Bernoulli numbers considered by H. W. Gould in [7, p.49, Eq.(17)] is also a complementarity of the Apostol's formula (3), for ¸ = 1 n ¡ n + 1 n + k 1 B = (¡1)k S(n + k; k): (17) n n ¡ k k k X=0 µ ¶µ ¶ Remark 2.6. There is a relationship between Apostol-Bernoulli polynomials Bn(x; ¸) and Stirling numbers of the second kind: n k¡ n 1 B (x; ¸) = k (¡1)j¸j(¸ ¡ 1)¡j¡1j!S(k ¡ 1; j)xn¡k; (¸ =6 ¡1): (18) n k k j=0 X=1 µ ¶ X Remark 2.7. Recently, Luo also obtained the relation between the classical Bernoulli polynomials and the Stirling numbers of the second kind [8], which is a complementarity of (18), for ¸ = 1: n n¡k ¡ n k + s + 1 s + 2k 1 B (x) = S(s + 2k; k)xn¡s¡k: (19) n s + k s k k s=0 X=0 X µ ¶µ ¶µ ¶ Q.-M. Luo / Central European Journal of Mathematics 2(4) 2004 509{515 513 3 Apostol-Bernoulli polynomials and the Hurwitz Zeta Function It is well-known that Hurwitz-Lerch Zeta functions are de¯ned by the in¯nite series (see [5, p.121, (1)]) 1 zk ©(z; a; s) = ; (20) (a + k)s k=0 C Z¡ C X (a 2 n 0 ; s 2 ; when jzj < 1; <(s) > 1; when jzj = 1): Setting z = e2¼iz gives the Lipschitz-Lerch Zeta function Á(z; a; s) (see [1, p.161]) 1 e2k¼iz Á(z; a; s) = ; (21) (a + k)s k=0 C Z¡ R Z X Z (a 2 n 0 ; z 2 n ; <(s) > 0; z 2 ; <(s) > 1): When s = ¡n is negative integer, the Lipschitz-Lerch Zeta function Á(z; a; s) was evalu- ated by T. M. Apostol using polynomials Bn(x; ¸) (see [1, p.164]): B (a; e2¼iz) Á(z; a; ¡n) = ¡ n+1 : (22) n + 1 If we set z = 0 in (22), then we have the formula (see [2, p.264, Theorem 12.13]) B (a) ³(a; ¡n) = ¡ n+1 (23) n + 1 1 1 where ³(a; s) are Hurwitz Zeta functions de¯ned by ³(a; s) := (see [2, k=0 (a + k)s p.249]) and Bn(x) are classical Bernoulli polynomials. P Further, if we set a = 0 in (23), then we have the known formula (see [2, p.266, Theorem 12.16]): B ³(¡n) = ¡ n+1 (24) n + 1 1 1 where ³(s) are Riemann Zeta functions de¯ned by ³(s) := (see [2, p.249]) and k=0 ks Bn := Bn(0) are classical Bernoulli numbers. P In this section, we will apply the Lerch functional equation to obtain the representa- p tion of Apostol-Bernoulli polynomials B (x; ¸) at rational points x = .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us