Results of CUORICINO and R&D of CUORE

Results of CUORICINO and R&D of CUORE

Results of CUORICINO and R&D of CUORE Ettore Fiorini, Erice, September 22, 2005 - 1. (A,Z) => (A,Z+2) + 2 e + 2 νe¯ 2. (A,Z) => (A,Z+2) + 2 e- + (.. 2,3 χ) 3. (A,Z) => (A,Z+2) + 2 e- Process 2. And 3. imply lepton violation Process 3. Is normally called “neutrinoless ββ decay” Crucial for the determination of the absolute value of the Majorana neutrino mass <m ν > IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? ν=ν− or ν≠ν− Lepton number conservation or violation Has neutrino a finite mass MAJORANA 100 % chirality Aalseth CE et al. hep -ex/0201021 − ν ν → → ⇐ ⇒ PNNL GOAL: < mν> ~ 0.02 -0.07 eV South Carolina University Main concern: TUNL Main concern: PPeerrkkiinn -EEllmmeerr ddeessiiggnn •• ccoosstt aanndd ttiimmee ffoorr ii..ee.. 76GGee Contacts ITEP • cosmogenic background Dubna • cosmogenic background •• mmaatteerriiaall sseelleeccttiioonn NMSU Washington University TT0ν > (0.4 --22)) xx 1100 28 y Conventional super -low bkg cryostat in 10 years measurement (21 crystals) • Deep underground location WIPP/ Homestake • ~$20M enriched 85% 76Ge • 210 2kg crystals, 12 segments • Advanced signal processing • ~$20M Instrumentation • Special materials (low bkg) Lead or copper shield • 10 year operation Double Beta –Disintegration M.Goeppert-Mayer, The John Hopkins University (Received May, 20 , 1935) From the Fermi theory of β− disintegration the probability of simultameous emission of two electrons (and two neutrinos) has been calculated. The result is that this process occurs sufficiently rarely to allow an half-life of over 1017 years for a nucleus, even if its isobar of atomic number different by 2 were more stable by 20 times the electron mass Since the very beginning double beta decay was considered as a powerful tool to test lepton number conservation. Many experiments were carried out sometimes with later disproved evidences. First evidences in geochemical experiments and for the first time with a direct experiment on 82Se by M.Moe rate of DDB-0νPhase space Nuclear matrixE ffectiveMajorana elements neutrino mass 2 2 1/τ = G(Q,Z) |Mnucl| <mν> Experimental approach Geochemical experiments 82Se = > 82Kr, 96Zr = > 96Mo, 128Te = > 128Xe (non confirmed), 130Te = > 130Te Radiochemical experiments 238U = > 238Pu (non confirmed) Direct ex-periments Source = detector Source ≠ detector (calorimetric) e- e- Recent results on two neutrino bb decay 2ν 2ν Isotope Τ1/2 (y) (measured) Τ1/2 (y) (calculated ) 48Ca (4.2 +2.1-1.0 ) × 1019 6 × 1018 - 5 × 1020 76Ge (1.42 +0.09- 0.07) × 1021 7 × 1019 - 6 × 1022 86Se (0.9 ± 0.1) × 1020 3 × 1018 - 6 × 1021 96Zr (2.1+0.8-0.4) × 1019 3 × 1017 - 6 × 1020 100Mo (8.0 ± 0.7) × 1018 1 × 1017- 2 × 1022 100Mo(0*) 6.8 ± 1.2) × 1020 5 × 1019 - 2 × 1021 126Cd (3.3 +0.4-0.3) × 1019 3 × 1018 - 2 × 1021 128Te (2.5 ± 0.4) × 1024 9 × 1022 - 3 × 1025 130Te (0.9 ± 0.15) × 1021 2 × 1019 - 7 × 1020 150Nd (7.0 ± 1.7) × 1018 6 × 1016- 4 × 1020 238U (2.0 ± 0.6) × 1021 1.2 × 1019 Present experimental situation Nucleus Experiment % Qββ Enr Technique Τ0ν (y) <mν) 48Ca Elegant IV 0.2 4271 scintillator >1.4x1022 7-45 76Ge Heid-Moscow 7.8 2039 87 ionization >1.9x1025 .12 - 1 76Ge IGEX 7.8 2039 87 ionization >1.6x1025 .14 – 1.2 76Ge Klapdor et al 7.8 2039 87 ionization 1.2x1025 .44 82Se NEMO 3 9.2 2995 97 tracking >1.x1023 1.8-4.9 100Mo NEMO 3 9.6 3034 95-99 tracking >4.6x1023 .7-2.8 116Cd Solotvina 7.5 3034 83 scintillator >1.7x1023 1.7 - ? 128Te Bernatovitz 34 2529 geochem >7.7 × 1024 .1-4 130Te Cuoricino 34 2529 bolometric >1.8x1024 .2-1.1 136Xe DAMA 8.9 2476 69 scintillator >1.2x1024 1.1 -2.9 150Nd Irvine 5.6 3367 91 tracking >1.2x1021 3 - ? Thermal Detectors heat bath Q !T = Thermal sensor CV v T 3 CV = 1944 ( ) J/K absorber vm ! crystal Incident particle Excellent resolution <1 eV ~ 3 eV @ 6 keV ~10 eV ~keV @ 2 MeV CCrryyooggeenniicc DDeetteeccttoorrss Heat bath (~8 mK) Weak thermal coupling (G~4 pW/mK) Thermometer (NTD Ge , R~100 MΩ) Adsorber crystal -9 (TeO2, C~10 J/K) Cryodet features ▲ wide choice of detector materials E !T = ▲ good energy resolution C ▲ true calorimeters ▼ velocity Resolution of the 5x5x5 cm3 (~ 760 g ) crystals : 0.8 keV FWHM @ 46 keV 1.4 keV FWHM @ 0.351 MeV 210Po α line 2.1 keV FWHM @ 0.911 MeV 2.6 keV FWHM @ 2.615 MeV 3.2 keV FWHM @ 5.407 MeV s t n u o (the best α spectrometer ever C realized) Energy [keV] Mass Increase 10000,00 1000,00 ] 100,00 g k [ Cuoricino s 10,00 Mibeta s a M 1,00 4 detectors array 340 g 0,10 73 g 0,01 1985 1990 1995 2000 2005 2010 2015 Year CCuuoorriicciinnoo 11 modules 4 detectors each Dimension: 5x5x5 cm3 Mass: 790 g Total mass 40.7 kg 2 modules 9 detectors each, Dimension: 3x3x6 cm3 Mass: 330 g CCuuoorriiMcciainnssoo Incmmooreddauusellee GeGe NTDNTD tthermistorhermistor A Cuoricino modulre DDeetteeccttoorrss aasssseemmbblliinngg Operations carried out In a clean room TToowweerr aasssseemmbblliinngg 3000 2615 keV 208Tl 2500 2000 single escape 1500 Counts double escape 1000 500 0 500 1000 1500 2000 2500 3000 E = 7.5 keV @ 2615 keV Δ FWHM Energy [keV] LLiivvee ttiimmee Run I Cooldown: February 2003 Detectors: 14/62 detectors lost Working detectors: 73% Live Time: 23% Upgrade: October 2003 • Wiring • DAQ • Temperature feedback • Cryogenics (20 years old cryostat) Run II Cooldown: May 2004 Detectors: 2 detectors still dead + 2 with high noise Working detectors: 94% Live Time: 64% (+ ~ 10% calibrations time) BBaacckkggrroouunndd • Flat background above 2615 keV • Natural extrapolation below • Contribution to the 0ν-DBD region: ~ 60% Results from data analysis up to May , 2005 130 ∼ 5.36 kg xy ( Te)× y Live time ~64% ( ~74% with calibrations) • Background 0.18 ± 0.01 counts keV-1 kg-1 y-1 24 • τ ½ > 1.86 x 10 years (90 % c.l.) • <mν > 0.2 - 1 eV • Klaptor et al (0.1-0.9 eV)-1 DBD and Neutrino Masses Present Cuoricino region Arnaboldi et al., submitted to PRL, hep-ex/0501034 (2005). Possible evidence (best value 0.39 eV) H.V. Klapdor-Kleingrothaus et al., Nucl.Instrum.and Meth. ,522, 367 (2004). With the same matrix elements the Cuoricino limit is 0.53 eV “quasi” degeneracy m1≈ m2 ≈ m3 Inverse hierarchy 2 2 Δm 12= Δm atm Direct hierarchy 2 2 Δm 12= Δm sol Cosmological disfavoured region (WMAP) Feruglio F. , Strumia A. , Vissani F. hep-ph/0201291 Next generation experiments Name % Qββ % E B T (year) Tech <m> c/y CUORE 130Te 34 2533 90 3.5 1.8x1027 Bolometric 9-57 GERDA 76Ge 7.8 2039 90 3.85 2x1027 Ionization 29-94 Majorana 76Ge 7.8 2039 90 .6 4x1027 Ionization 21-67 GENIUS 76Ge 7.8 2039 90 .4 1x1028 Ionization 13-42 Supernemo 82Se 8.7 2995 90 1 21026 Tracking 54-167 EXO 136Xe 8.9 2476 65 .55 1.3x1028 Tracking 12-31 Moon-3 100Mo 9.6 3034 85 3.8 1.7x1027 Tracking 13-48 DCBA-2 150Nd 5.6 3367 80 1x1026 Tracking 16-22 Candles 48Ca .19 4271 - .35 3x1027 Scintillation 29-54 CARVEL 48Ca .19 4271 - 3x1027 Scintillation 50-94 GSO 160Gd 22 1730 - 200 1x1026 Scintillation 65-? COBRA Te-Cd 7.5 2805 Ionization SNOLAB+ 150Nd 5.6 3367 Scintillation R&D for CUORE Let us start with CUORICINO e Model of the background in CUORICINO Reduction of ~ 4 in the crystal surface radioactivity already achieved Bulk contamination Previous analysis by CUORICINO ►Native tellurium → < 10-10 g/g -9 ►TeO2 → ~ 10 g/g ►Crystals → ~ 10-14 g/g Reduction of Surface Background from Copper only ~ 50% Could be something different from Copper? Recent runs 1.Thermistors ► Two Crystals faces ► 5000 mm2 ► 800 crystals Wires two crystal faces ► 500 crystals ►Teflon four crystal faces ► 40 crystals No major contribution 2.New Run Action of surface active detectors :see later 3 Future run Various sources of background Measurements by ICPMS reported previously surface activity ~ 10-9 g/g 10-10 - 10-11 g/g after a few microns in agreement with Monte Carlo Difficulty Copper pollutes the machine for about three weeks New approach ►Laser Ablation ICPMS (LNL and CNR Padua) Preliminary results • Copper samples with different cleaning procedure • Tumbling ► electropolishing ►chemical etching►plasma cleaning • With plasma cleaning an apparent reduction of U and Th contamination by an order of magnitude • Problem difficulty to extract the mass of the ablated Copper due to the surface property • New approach ►Measurement of the extracted volume by cutting each copper sample in two • Counts of 65 Cu ► ablated volume • Ablated volume ►Number of spots Scintillation vs.heat or surface sensitive bolometers A composite bolometer with a thin crystal of Ge, Si o TeO2 ” ββ” event impulso classico impulso classico impulso classico impulso veloce e saturato Degraded α event distribuzione tempi salita (termistore cristallo sottile) Fast surface events Slow bulk events Scintillation vs heat The scintillating bolometer Proved for CaF2 being studied for TeO2 CUORE SENSITIVITY 0 25 1/2 F ν = 9.4 × 10 × ( T[y ] ) | < m > | (0.024- 0.13 eV in 5 y) F0ν = 3 × 1026 × ( T[y ] )1/2 | < m > | (0.016- 0.09 eV in 5 y) CUORE Background in the neutrinoless ββ region Monte Carlo results , supported by CUORICINO Bulk crystal (<.1 pg/g) and external activity negligible a. γ cryostat activity (thermal shield larger in in CUORICINO then MIDBD) Increased Roman lead and no thermal shields < .0038 counts/keV/kg/year b.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    52 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us