Write the Equation of a Sine Function with the Given Characteristics

Write the Equation of a Sine Function with the Given Characteristics

Math 165 - Chapter 6 - some problems to practice Name___________________________________ Write the equation of a sine function with the given characteristics. 1) Amplitude: 4 Period: 6Δ Δ Phase Shift: 6 Graph the function. Show at least one period. Δ 2) y = 3cos(5x + ) 2 1 3) Given that f(x) = 2tanx, g(x) = 3cosx, k(x) = -sinx and h(x) = 2x, find each of the following 13Δ a) f( ) 4 b) (goh)(pi/8) c) (hok)(11pi/6) d) (g - f)(4pi/3) e) Find the average rate of change of g(x) over the interval [pi/2, pi] 2 Find the exact value of the requested trigonometric function of Ό. 2 4) cos Ό = and tan Ό < 0, find sin Ό. 5 _________________________________________________________________________________________ Find an equation for the graph. 5) a) Find an equation for the graph with no phase shift b) Find an equation for the graph with phase shift = pi/2 c) Find an equation for the graph with phase shift = 3pi/4 __________________________________________________________________________________________ Use the given values of the sine and cosine to find the function value. 5 -2 6 6) sin Ό = - , cos Ό = . Find cotΌ. 7 7 3 Name the quadrant in which the angle Ό lies. 7) sin Ό > 0 and cos Ό < 0 ___________________________________________________________________________________ Evaluate. Δ ŘΔ 8) csc - + sec - 3 3 ___________________________________________________________________________________ 9) Which function increases more rapidly over the interval [0, pi/4]? f(x) = sinx or g(x) = tan x? __________________________________________________________________________________________ 10) If sin x = 2/3, what is a) sin(x+pi) b) sin (pi - x) c) sin (2pi - x) _______________________________________________________________________________________________ 11) Which trigonometric functions are odd functions? 4 12) What is the range of the cosecant function? _____________________________________________________________________________________ 13) If cos x = 0.4, what is a) cos (-x) b) cos (x + 2pi) b) sin (pi - x) __________________________________________________________________________________________ 14) Evaluate 2 tan(pi) - 3 sin (-3pi/2) - 4 cos (-5pi) _____________________________________________________________________________________________ Find the exact value of the expression. Do not use a calculator. 19Δ 15) sec 4 ____________________________________________________________________________________________ Solve the problem. 16) What is the range of the tangent function? 5 17) Find the exact value of sin 135° - sin 270°. Do not use a calculator. ____________________________________________________________________________________________ Find the exact value of the expression. 18) If angle A is 30°, find the exact value of 4 sin A - 2 csc2 A + tan (90° - A). _____________________________________________________________________________________________ Solve the problem. 19) Find the exact value of cos 495° + tan -120°. Do not use a calculator. _____________________________________________________________________________________________ 20) If friction is ignored, the time t (in seconds) required for a block to slide down an inclined plane is given by the formula 2a t = g sinΌ cosΌ where a is the length (in feet) of the base and g Y 32 feet per second per second is the acceleration of gravity. How long does it take a block to slide down an inclined plane with base a = 8 when Ό = 45°? Round the final answer to the nearest tenth of a second. 6 A point on the terminal side of angle Ό is given. Find the exact value of the given trigonometric function. 21) (-15, 36); Find sin Ό. ___________________________________________________________________________________________ Find the amplitude, phase shift and period of the function. Δ 22) y = -2 sin (4x - ) 2 ____________________________________________________________________________ 23) Give the period of each of the six trigonometric functions and skech a rough sketch for each. 7 Answer Key Testname: REVCHAP6-SUMMER 2018 1 1 1) y = 4 sin x - Δ 3 18 2) (-3-4 3) 3) (a) 2, (b) (3 2) / 2; (c) 1; (d) ; (e) -6/pi 2 21 4) - 5 5) a) y = 3 sin (2x); (b) y = -3sin(2x - pi); (c) y=-3cos(2x-3pi/2) 2 6 6) 5 7) Quadrant II 2 3 8) -2 - 3 2 2 9) y = tan x. The ARC for tangent is 4/pi, which is bigger than the ARC for sine that is pi 10) (a) -2/3; (b) 2/3; (c) -2/3 11) sine, cosecant, tangent, cotangent 12) all real numbers greater than or equal to 1 or less than or equal to -1 13) (a) 0.4; (b) 0.4; (c) 0.84 14) 1 15) - 2 16) all real numbers 2 + 2 17) 2 18) 3 - 6 - 2 + 2 3 19) 2 20) 1 sec 12 21) 13 22) 2, pi/2, pi/8 23) you do this one 8.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us