2.1 Use of Permutation (Similarity) in Solving Block-Diagonal System

2.1 Use of Permutation (Similarity) in Solving Block-Diagonal System

MATH3602 Chapter 2 Advanced Direct Methods 1 2 Advanced Direct Methods 2.1 Use of Permutation (Similarity) in Solving Block-Diagonal System • Suppose we are to" solve the following# system of linear equation: Ax = b where D11 D12 A = and Dij = Diag(Dij; ··· ;Dij) D21 D22 1 n are n × n diagonal matrices for i; j = 1; 2. Here A is a matrix of 2 × 2 block (same size n × n of diagonal matrix). • 2 3 2 3 2 3 D11 D12 x b 6 1 1 7 6 1 7 6 1 7 6 ... ... 7 6 . 7 6 . 7 6 7 6 7 6 7 6 D11 D12 7 6 x 7 6 b 7 6 n n 7 6 n 7 = 6 n 7 6 21 22 7 6 7 6 7 6 D1 D1 7 6 xn+1 7 6 bn+1 7 4 ... ... 5 4 . 5 4 . 5 21 22 Dn Dn x2n b2n • LU factorization may need O(n3) operation? MATH3602 Chapter 2 Advanced Direct Methods 2 • Any strategy you can propose apart from LU factorization? We consider the following example:2 3 6 5 0 0 2 0 0 7 6 7 6 0 4 0 0 1 0 7 6 7 6 0 0 5 0 0 2 7 6 7 · A = 6 7 = L U 6 1 0 0 4 0 0 7 6 7 4 0 3 0 0 3 0 5 0 0 1 0 0 5 2 3 2 3 6 1:00 0 0 0 0 0 7 6 5:00 0 0 2 0 0 7 6 7 6 7 6 0 1:00 0 0 0 0 7 6 0 4:00 0 0 1 0 7 6 7 6 7 6 0 0 1:00 0 0 0 7 6 0 0 5:00 0 0 2 7 · ≡ 6 7 · 6 7 L U 6 7 6 7 6 0:20 0 0 1:00 0 0 7 6 0 0 0 3:60 0 0 7 6 7 6 7 4 0 0:75 0 0 1:00 0 5 4 0 0 0 0 2:25 0 5 0 0 0:20 0 0 1:00 0 0 0 0 0 4:60 MATH3602 Chapter 2 Advanced Direct Methods 3 • One can consider a re-arrangement of both the equations and variables and get the following equivalent system of equations A~x~ = b~: 2 3 2 3 2 3 D11 D12 x b 6 1 1 7 6 1 7 6 1 7 6 21 22 7 6 7 6 7 6 D1 D1 7 6 xn+1 7 6 bn+1 7 6 11 12 7 6 7 6 7 6 D2 D2 7 6 x2 7 6 b2 7 6 7 6 7 6 7 6 D21 D22 7 6 x 7 6 b 7 6 2 2 7 6 n+2 7 6 n+2 7 6 . 7 6 . 7 = 6 . 7 6 .. 7 6 . 7 6 . 7 6 7 6 7 6 7 6 ... 7 6 . 7 6 . 7 6 7 6 7 6 7 4 11 12 5 4 5 4 5 Dn Dn xn bn 21 22 Dn Dn x2n b2n MATH3602 Chapter 2 Advanced Direct Methods 4 • It is clear to see that the linear system has a unique solution iff " #! 11 12 Di Di 6 det 21 22 = 0 for i = 1; 2; : : : ; n: Di Di • The solution is given by (i = 1; 2; : : : ; n) " # " # x 1 D22b − D12b i = i i i n+i 11 22 − 21 12 11 − 21 xn+i Di Di Di Di Di bn+i Di bi • The computational cost is O(n). • The memory cost is also O(n). • There exists a permutation matrix P such that A~ = P · A · P T where P T = P −1. MATH3602 Chapter 2 Advanced Direct Methods 5 • The following is an example when n = 2: 2 3 2 3 2 3 2 3 11 12 11 12 6 D1 D1 7 6 1 0 0 0 7 6 D1 D1 7 6 1 0 0 0 7 6 21 22 7 6 7 6 11 12 7 6 7 6 D1 D1 7 6 0 0 1 0 7 6 D2 D2 7 6 0 0 1 0 7 6 11 12 7 = 6 7 6 21 22 7 6 7 4 D2 D2 5 4 0 1 0 0 5 4 D1 D1 5 4 0 1 0 0 5 21 22 21 22 D2 D2 0 0 0 1 D2 D2 0 0 0 1 2 3 2 3 2 3 11 12 11 12 6 D1 D1 7 6 1 0 0 0 7 6 D1 D1 7 6 21 22 7 6 7 6 11 12 7 • 6 D1 D1 7 6 0 0 1 0 7 6 D2 D2 7 6 11 12 7 = 6 7 6 21 22 7 4 D2 D2 5 4 0 1 0 0 5 4 D1 D1 5 D21 D22 0 0 0 1 D21 D22 2 2 2 3 2 32 2 2 3 11 12 11 12 6 D1 D1 7 6 D1 D1 7 6 1 0 0 0 7 6 21 22 7 6 21 22 7 6 7 • 6 D1 D1 7 6 D1 D1 7 6 0 0 1 0 7 6 11 12 7 = 6 11 12 7 6 7 4 D2 D2 5 4 D2 D2 5 4 0 1 0 0 5 21 22 21 22 D2 D2 D2 D2 0 0 0 1 MATH3602 Chapter 2 Advanced Direct Methods 6 • To solve Ax = b, i.e., to solve AP~ x = P b: Stage 1 : A~y = P b (solve for y) Stage 2 : P x = y (solve for x) • The computational cost of P x can be ignored or is negligible. • The idea can be extended to a matrix of m × m block (same size of diagonal matrix). • If m << n, then the computational cost will be O(m3n). Why? • The method can be implemented in a parallel computer easily. If there are O(n) processors, then the computational cost can be reduced to O(m3). MATH3602 Chapter 2 Advanced Direct Methods 7 • LU factorization can be applied wisely in diagonal block form: 2 3 11 12 6 D1 D1 7 6 . 7 6 .. .. 7 6 7 6 D11 D12 7 6 n n 7 6 21 22 7 6 D1 D1 7 6 7 4 ... ... 5 21 22 Dn Dn 2 3 2 3 1 2 6 1 7 6 U1 U1 7 6 . 7 6 . 7 6 .. 7 6 .. .. 7 6 7 6 7 6 1 7 6 U 1 U 2 7 = 6 7 6 n n 7 6 7 6 1 7 6 L1 1 7 6 Un+1 7 6 7 6 7 4 ... ... 5 4 ... 5 1 Ln 1 U2n • The idea can be extended to a matrix of m × m block (same size of diagonal matrix). If m << n, the computational cost will be O(m3n). MATH3602 Chapter 2 Advanced Direct Methods 8 2.2 Use of Similarity in Solving Circulant Matrix System • A matrix is called a circulant matrix if it takes the following form: 2 3 ······ 6 a1 a2 an−1 an 7 6 7 6 an a1 a2 ······ an−1 7 6 . 7 6 a − a a ······ . 7 6 n 1 n 1 7 An = 6 . 7 : 6 . .. .. .. .. 7 6 . 7 4 a3 ······ .. a1 a2 5 a2 a3 ··· an−1 an a1 • We note that each row is just the previous row cycled forward for one step. • Thus an n × n circulant matrix is characterized by n coefficients only. 0 0 • In an n × n circulant matrix, we have Cij = Ci0j0 if i − j ≡ i − j (mod n). MATH3602 Chapter 2 Advanced Direct Methods 9 • In fact, we can write Xn−1 i An = ai+1Cn (2.1) i=0 where C is a permutation matrix n 2 3 0 1 0 ··· 0 6 7 6 7 6 0 0 1 0 7 6 . 7 Cn = 6 . .. .. 7 : 6 7 4 . ... ... 1 5 1 0 ······ 0 • i 0 n We note that Cn are all permutation matrices and Cn = Cn = In. • Moreover, An is diagonalized if Cn is diagonalizable. MATH3602 Chapter 2 Advanced Direct Methods 10 • i It can be shown that all Cn can be diagonalized by using the discrete Fast Fourier Transform (FFT) matrix Fn. • The discrete FFT matrix is defined2 as follows: 3 0·0 0·1 ··· 0·(n−1) 6 wn wn wn 7 6 1·0 1·1 ··· 1·(n−1) 7 6 wn wn wn 7 Fn = Fn(wn) = 6 7 4 . 5 (n−1)·0 (n−1)·1 (n−1)·(n−1) wn wn ··· wn where ( ) ( ) −2πi 2π 2π w = e n = cos − i sin : n n n • It can be shown that (Exercise) 2 3 − · − w−0·0 w−0·1 ··· w 0 (n 1) ( ) 6 n n n 7 6 −1·0 −1·1 ··· −1·(n−1) 7 −1 1 1 1 6 wn wn wn 7 Fn = Fn = 6 . 7 : n wn n 4 . 5 −(n−1)·0 −(n−1)·1 −(n−1)·(n−1) wn wn ··· wn MATH3602 Chapter 2 Advanced Direct Methods 11 • A demonstration2 3 2 3 2 3 2 3 6 0 1 0 0 7 6 0 0 1 0 7 6 0 0 0 1 7 6 1 0 0 0 7 6 7 6 7 6 7 6 7 6 0 0 1 0 7 2 6 0 0 0 1 7 3 6 1 0 0 0 7 4 6 0 1 0 0 7 C4 = 6 7 ;C = 6 7 ;C = 6 7 ;C = 6 7 ; 4 0 0 0 1 5 4 4 1 0 0 0 5 4 4 0 1 0 0 5 4 4 0 0 1 0 5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 • 2 3 2 3 6 1 1 1 1 7 6 0:25 0:25 0:25 0:25 7 6 − − 7 6 − − 7 6 1 i 1 i 7 −1 6 0:25 0:25i 0:25 0:25i 7 F4 = 6 7 F = 6 7 : 4 1 −1 1 −1 5 4 4 0:25 −0:25 0:25 −0:25 5 1 i −1 −i 0:25 −0:25i −0:25 0:25i • · −1 · · −1 − − Here F4 F4 = I4 and F4 C4 F4 = Diag(1; i; 1; i).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    94 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us