The Hamiltonian and Schrodinger Equation for Helium's Electrons

The Hamiltonian and Schrodinger Equation for Helium's Electrons

University of Connecticut OpenCommons@UConn Chemistry Education Materials Department of Chemistry 6-15-2006 The aH miltonian and Schrodinger Equation for Helium's Electrons (Hylleraas) Carl W. David University of Connecticut, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/chem_educ Part of the Chemistry Commons Recommended Citation David, Carl W., "The aH miltonian and Schrodinger Equation for Helium's Electrons (Hylleraas)" (2006). Chemistry Education Materials. 8. https://opencommons.uconn.edu/chem_educ/8 The Hamiltonian and Schrodinger Equation for Helium’s Electrons (Hylleraas) C. W. David Department of Chemistry University of Connecticut Storrs, Connecticut 06269-3060 (Dated: June 15, 2006) I. INTRODUCTION (remember, we are holding all the other {xi} constant) for electron 1 and electron 2, with equivalent terms for y For this two electron problem, the Schr¨odinger Equa- and z (two each) as a function or r1, r2 and ϑ, the angle tion has the form between the location vectors of the two electrons, ~r1 and ~r2. 2 2 2 ¯h 2 2 Ze Ze − ∇1 + ∇2 ψ − ψ − ψ = Eψ (1.1) 2m r1 r2 III. THE COORDINATE TRANSFORMATION where m is the mass of an electron, and the subscripts refer to electron 1 and 2 respectively. Here . Remember that 2 2 2 ∂ ∂ ∂ q ∇1 = + + 2 2 2 2 2 2 r1 = x + y + z ∂x1 ∂y1 ∂z1 1 1 1 where the subscript “1” means we are refering to electron and 1 (we have a similar expression for electron 2). − q It is traditional to set Z=2, since Z=1 is H , Z=3 2 2 2 r2 = x + y + z would be Li+, etc., i.e., to specialize to Helium itself. 2 2 2 Then, cross multiplying one has while, of course, 2m Ze2 2m Ze2 2m 2 2 p 2 2 2 − ∇1 + ∇2 ψ − 2 ψ − 2 ψ = E 2 ψ (1.2) r12 = (x1 − x2) + (y1 − y2) + (z1 − z2) ¯h r1 ¯h r2 ¯h which is the form most people start with. A. Preliminary Partial Derivatives II. THE HAMILTONIAN We need, according to the chain rule, the following terms: Assuming infinite nuclear masses, (m = melectron) one ∂ ∂r ∂ ∂y ∂ has = 1 + (3.1) ∂x1 ∂x1 ∂r1 ∂x1 ∂µ 2 2 2 2 ¯h 2 2 Ze Ze e Hop = − ∇ + ∇ − − + (2.1) 2m 1 2 r r r so, focussing on the first of these, we ask, what is ∂r1 ? 1 2 12 ∂x1 We have We start with the idea of expressing the kinetic energy part of the Hamiltonian in a form appropriate for this p 2 2 2 2 2 2 ∂r1 ∂ x1 + y1 + z1 1 −1 ∂ x1 + y1 + z1 x1 problem. That operator surely has the form = = r1 = ∂x1 ∂x1 2 ∂x1 r1 2 (3.2) ¯h 2 2 − ∇1 + ∇2 Parenthetically, 2me −1 where ∇ has its traditional functional meaning: ∂r1 −1 ∂r1 x1 = 2 = − 3 (3.3) ∂x1 r1 ∂x1 r1 ∂2 ∂2 ∂2 ∇1 = 2 + 2 + 2 Then, we have ∂x1 ∂y1 ∂z1 −2 with a second almost identical term for electron 2’s ki- ∂r1 −3 ∂r1 = −2r1 netic energy operator. ∂x1 ∂x1 That means that we need to obtain ∂ 2 x = − 1 ∂x1 3 y1,z1,x2,y2,z2 r1 r1 Typeset by REVTEX 2 2x1 ∂µ z1 r1r2µ z2 = − 4 = − 3 (3.10) r1 ∂z2 r1r2 r1 r2 Now, using the chain rule, we have For the second term in Equation 3.1 We start with the equation for the angle between the two radii ~r1 and ~r2. ∂ ∂r1 ∂ ∂µ ∂ From the law of cosines, we have = + ∂x1 ∂x1 ∂r1 ∂x1 ∂y q 2 2 r12 = r1 + r2 − 2r1r2 cos ϑ and the two multiplicative partial derivatives are known. Using Equation 3.5and Equation 3.4 we have while from vector algebra we know ∂ x1 ∂ x2 ~r1 · ~r2x1 ∂ ~r1 · ~r2 = + − 3 cos ϑ = ∂x1 r1 ∂r1 r1r2 r r2 ∂y r1r2 1 (An alternative formulation for this vector algebraic which is statement is: ∂ x1 ∂ x2 x1µ ∂ ~r1 · ~r2 x1x2 + y1y2 + z1z2 = + − 2 cos ϑ = = ≡ µ (3.4) ∂x1 r1 ∂r1 r1r2 r1 ∂y r1r2 r1r2 which defines µ = cosϑ. Since B. Second Partial Derivatives ∂ x1x2+y1y2+z1z2 ∂µ r1r2 = The second derivative would be ∂x1 ∂x1 x1 ∂ x2 x1µ ∂ gives us (using Equations 3.2 and 3.3) 2 ∂ + − 2 ∂ r1 ∂r1 r1r2 r1 ∂µ 2 = x x x + y y + z z ∂r−1 ∂x1 ∂x1 = 2 + 1 2 1 2 1 2 1 r r r ∂x 1 2 2 1 which would be x ∂ x x µ ∂ x2 x1x2 + y1y2 + z1z2 x1 2 1 2 1 ∂ r ∂r ∂ r r − r2 ∂µ = − 3 ∂ 1 1 1 2 1 r1r2 r2 r1 2 = + ∂x1 ∂x1 ∂x1 x ~r · ~r x We have achieved a mixed representation of the second = 2 − 1 2 1 3 partial derivative. r1r2 r2 r1 Now we take the derivative with respect to x1 where appropriate, before converting ∂ to ∂ and ∂ . We ∂µ x r r µ x ∂x1 ∂r1 ∂µ 2 1 2 1 obtain = − 3 (3.5) ∂x1 r1r2 r2 r1 1 ∂ 2 ∂ Clearly, the other five groups of terms are equivalent. ∂ 1 ∂ r1 ∂r1 2 = + x1 (3.11) ∂µ y r r µ y ∂x1 r1 ∂r1 ∂x1 = 2 − 1 2 1 (3.6) 3 x2 ∂ ∂y1 r1r2 r2 r1 ∂ r r ∂µ + 1 2 (3.12) ∂x1 ∂µ z2 r1r2µ z1 µ ∂ = − 3 (3.7) − 2 (3.13) ∂z1 r1r2 r2 r1 r1 ∂µ µ ∂ ∂ 2 r1 ∂µ ∂µ x1 r1r2µ x2 −x1 (3.14) ∂x1 = − 3 (3.8) ∂x2 r1r2 r1 r2 Now we expand the partial derivatives with respect to x1 to their replacements. We are going to get a devil of a ∂µ y1 r1r2µ y2 = − 3 (3.9) lot of terms. We obtain for the first term ∂y2 r1r2 r1 r2 3 ∂2 2 = ∂x1 −1 2 2 1 ∂ ∂r1 ∂ x1 ∂ 1 ∂ −x1 ∂ x1 ∂ Equation − 3.11 → + x1 + → + x1 3 + (3.15) r1 ∂r1 ∂x1 ∂r1 r1 ∂x1∂r1 r1 ∂r1 r1 ∂r1 r1 ∂x1∂r1 x ∂ ∂ 2 −1 2 r1r2 ∂µ x ∂r ∂ x ∂ Equation − 3.12 → + → + 2 1 + 2 (3.16) ∂x1 r2 ∂x1 ∂µ r1r2 ∂x1∂µ µ ∂ Equation − 3.13 → − 2 (3.17) r1 ∂µ µ ∂ −2 ∂ 2 ∂µ r1 ∂r1 ∂ x1 ∂µ ∂ Equation − 3.14 − x1 → −x1µ − 2 ∂x1 ∂x1 ∂µ r1 ∂x1 ∂µ 2 x1µ ∂ − 2 (3.18) r1 ∂x1∂µ which is ∂2 2 = ∂x1 2 1 ∂ −x1 ∂ Equation − 3.15 → + 3 + r1 ∂r1 r1 ∂r1 x1 x1 ∂ x2 x1µ ∂ ∂ + − 2 (3.19) r1 r1 ∂r1 r1r2 r1 ∂µ ∂r1 x2 x1 ∂ x2 x1 ∂ x2 x1µ ∂ ∂ Equation − 3.16 → − 3 + + − 2 (3.20) r2 r1 ∂µ r1r2 r1 ∂r1 r1r2 r1 ∂µ ∂µ µ ∂ Equation − 3.17 → − 2 (3.21) r1 ∂µ −2 ∂r1 ∂ x1 x2 x1(~r1 · ~r2) ∂ Equation − 3.18 → −x1µ − 2 − 3 (3.22) ∂x1 ∂µ r1 r1r2 r1r2 ∂µ x1µ x1 ∂ x2 x1µ ∂ ∂ Equation − 3.18 → − 2 + − 2 (3.23) r1 r1 ∂r1 r1r2 r1 ∂µ ∂µ which is, upon cleaning up the expressions ∂2 2 = ∂x1 2 2 2 1 ∂ x1 ∂ x1 ∂ Equation − 3.19 → − 3 + 2 2 r1 ∂r1 r1 ∂r1 r1 ∂r1 2 x1 x2 x1µ ∂ + − 2 (3.24) r1 r1r2 r1 ∂r1∂µ 2 x2 x1 ∂ x2x1 ∂ Equation − 3.20 → − 3 + 2 + r2 r1 ∂µ r1r2 ∂r1∂µ x2 x2 x1µ ∂ ∂ − 2 (3.25) r1r2 r1r2 r1 ∂µ ∂µ µ ∂ Equation3.21 → − 2 (3.26) r1 ∂µ −2x1 ∂ x1x2 2 ~r1 · ~r2 ∂ Equation − 3.22 → −x1µ 4 − 3 − x1 5 (3.27) r1 ∂µ r1r2 r1r2 ∂µ 2 2 x1µ x1 ∂ x1µ x2 x1µ ∂ Equation3.23 → − 2 − 2 − 2 2 (3.28) r1 r1 ∂r1∂µ r1 r1r2 r1 ∂µ 4 and, cleaning up again, we have ∂2 2 = ∂x1 2 2 2 2 1 ∂ x1 ∂ x1 ∂ x1 x2 x1µ ∂ Equation − 3.24 → − 3 + 2 2 + − 2 (3.29) r1 ∂r1 r1 ∂r1 r1 ∂r1 r1 r1r2 r1 ∂r1∂µ 2 2 x2 x1 ∂ x2x1 ∂ x2 x2 x1µ ∂ Equation − 3.25 → − 3 + 2 + − 2 2 (3.30) r2 r1 ∂µ r1r2 ∂r1∂µ r1r2 r1r2 r1 ∂µ µ ∂ Equation3.26 → − 2 (3.31) r1 ∂µ 2 2x1µ ∂ x1x2 ∂ Equation − 3.27 → + 4 − 3 (3.32) r1 ∂µ r1r2 ∂µ 2 ~r1 · ~r2 ∂ Equation − 3.27 → +x1 5 (3.33) r1r2 ∂µ 2 2 2 2 2 2 x1µ ∂ x1µx2 ∂ x1µ ∂ Equation3.28 → − 3 − 3 2 + 4 2 (3.34) r1 ∂r1∂µ r1r2 ∂µ r1 ∂µ which is, penultimately, when all six term are added together, ∂2 ∂2 ∂2 ∂2 ∂2 ∂2 2 + 2 + 2 + 2 + 2 + 2 = ∂x1 ∂y1 ∂z1 ∂x2 ∂y2 ∂z2 2 2 2 3 ∂ r1 ∂ r1 ∂ Equation − 3.29 → − 3 + 2 2 + r1 ∂r1 r1 ∂r1 r1 ∂r1 2 2 2 2 2 x1x2 + y1y2 + z1z2 ∂ (x1 + y1 + z1 )µ ∂ 2 − 3 r1r2 ∂r1∂µ r1 ∂r1∂µ 2 2 2 3 ∂ r2 ∂ r2 ∂ Equation − 3.29 → − 3 + 2 2 + r2 ∂r2 r2 ∂r2 r2 ∂r2 2 2 2 2 2 x1x2 + y1y2 + z1z2 ∂ (x2 + y2 + z2 )µ ∂ 2 − 2 r2r1 ∂r2∂µ r2r1 ∂r2∂µ 2 x1x2 + y1y2 + z1z2 ∂ r2r1µ ∂ Equation − 3.30 → − 3 + 2 + r1r2 ∂µ r1r2 ∂r1∂µ 2 2 r2 (x1x2 + y1y2 + z1z2)µ ∂ 2 2 − 3 2 r1r2 r1r2 ∂µ 2 2 2 2 x2x1 + y1y2 + z1z2 ∂ (x2x1 + y1y2 + z1z2) ∂ r1 r1r2y ∂ Equation − 3.30 → − 3 + 2 + 2 2 − 3 2 r2r1 ∂µ r2r1 ∂r2∂µ r2r1 r2r1 ∂µ 3µ ∂ 3µ ∂ 3µ ∂ 3µ ∂ Equation − 3.31 → − 2 − 2 − 2 − 2 r2 ∂µ r1 ∂µ r2 ∂µ r1 ∂µ 2 2 2r1µ ∂ 2r2µ ∂ Equation − 3.32 → + 3 + 3 r1 ∂µ r2 ∂µ ~r1 · ~r2 ∂ ~r1 · ~r2 ∂ Equation − 3.32 → − 3 + 3 r1r2 ∂µ r2r1 ∂µ ~r2 · ~r1 ∂ ~r2 · ~r1 ∂ Equation − 3.33 → − 3 + 3 r2r1 ∂µ r2r1 ∂µ 2 2 2 2 2 r1µ ∂ ~r1 · ~r2µ ∂ µ ∂ Equation − 3.34 → − 3 − 3 2 + 2 2 r1 ∂r1∂µ r1r2 ∂µ r1 ∂µ 2 2 2 2 2 r2µ ∂ ~r1 · ~r2µ ∂ µ ∂ Equation − 3.34 → − 3 − 3 2 + 2 2 r2 ∂r2∂µ r1r2 ∂µ r2 ∂µ The term x1x2 + y1y2 + z1z2 is just r1r2µ, yields the gorgeous cancellations (see above) leading to which becomes ∂2 ∂2 ∂2 ∂2 ∂2 ∂2 2 + 2 + 2 + 2 + 2 + 2 = ∂x1 ∂y1 ∂z1 ∂x2 ∂y2 ∂z2 5 2 ∂ ∂2 Equation − 3.35 → + 2 (3.35) r1 ∂r1 ∂r1 2 2 r1r2µ ∂ µ ∂ Equation − 3.35 → + 2 − = 0 (3.36) r1r2 ∂r1∂µ r1 ∂r1∂µ 2 ∂ ∂2 Equation − 3.35 → + 2 (3.37) r2 ∂r2 ∂r2 2 2 r1r2µ ∂ µ ∂ Equation − 3.35 → + 2 − = 0 (3.38) r2r1 ∂r2∂µ r2 ∂r2∂µ 2 2 2 r1r2µ ∂ µ ∂ 1 r1r2µ ∂ Equation − 3.35 → − 3 + + 2 − 3 2 (3.39) r1r2 ∂µ r1 ∂r1∂µ r1 r1r2 ∂µ 2 2 2 r2r1µ ∂ r2r1µ ∂ 1 r1r2µ ∂ Equation − 3.35 → − 3 + 2 + 2 − 3 2 (3.40) r2r1 ∂µ r2r1 ∂r2∂µ r2 r2r1 ∂µ 3µ ∂ 3µ ∂ Equation − 3.35 → − 2 − 2 (3.41) r2 ∂µ r1 ∂µ 2µ ∂ 2µ ∂ Equation − 3.35 → + 2 + 2 (3.42) r1 ∂µ r2 ∂µ µ ∂ µ ∂ µ ∂ µ ∂ Equation − 3.35 → − 2 + 2 − 2 + 2 = 0 (3.43) r1 ∂µ r1 ∂µ r2 ∂µ r2 ∂µ µ ∂2 Equation − 3.35 → − (3.44) r1 ∂r1∂µ µ ∂2 Equation − 3.35 → − (3.45) r2 ∂r1∂µ We obtain ∂2 ∂2 ∂2 ∂2 ∂2 ∂2 2 + 2 + 2 + 2 + 2 + 2 = ∂x1 ∂y1 ∂z1 ∂x2 ∂y2 ∂z2 2 ∂ ∂2 Equation − 3.35 → + 2 (3.46) r1 ∂r1 ∂r1 2 ∂ ∂2 Equation − 3.37 → + 2 (3.47) r2 ∂r2 ∂r2 µ ∂ µ ∂2 1 µ2 ∂2 Equation − 3.39 → − 2 + + 2 − 2 2 (3.48) r1 ∂µ r1 ∂r1∂µ r1 r1 ∂µ | {z } µ ∂ µ ∂2 1 µ2 ∂2 Equation − 3.40 → − 2 + + 2 − 2 2 = 0 (3.49) r2 ∂µ r2 ∂r2∂µ r2 r2 ∂µ | {z } 3µ ∂ 3µ ∂ Equation − 3.41 → − 2 − 2 (3.50) r2 ∂µ r1 ∂µ 2µ ∂ 2µ ∂ Equation − 3.42 → + 2 + 2 (3.51) r1 ∂µ r2 ∂µ µ ∂2 Equation − 3.44 → − (3.52) r1 ∂r1∂µ | {z } µ ∂2 Equation − 3.45 → − (3.53) r2 ∂r1∂µ | {z } (where we notice that the underbraced material (above) cancels) which (almost) finally becomes 2 C.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us