Measuring team performance and modelling the home advantage effect in cricket Author: Paul Allsopp Degree: PhD Year of submission: 2005 ABSTRACT Cricket differs from many team sports in that it is not generally played within easily definable constraints. Thus, it is difficult to compare and contrast team performances. By employing a range of linear and logistic modelling techniques this thesis quantifies the extent to which team quality effects and a range of associated factors such as home advantage have shaped team performance in Test, ODI and domestic cricket. With regards to the latter, the thesis established that, in all forms of cricket, a team’s scoring potential and its capacity to win were both significantly amplified when it played at its home ground. The thesis proposes a method to estimate a projected score for the team batting second in ODI cricket. The method scales up the team’s actual winning scores in proportion to its unused run scoring resources. This creates a projected victory margin when it wins with unused run scoring resources at its disposal and provides a more realistic measure of its relative superiority at the point of victory than the current wickets-in-hand method. Accordingly, the thesis recommends a revised scheme for recording victories in ODI cricket which is consistent across innings and provides a mechanism for all victories to be compared and ranked on an equal footing. The thesis employs linear modelling methods that account for the size of a victory in ODI cricket and the magnitude of the first innings lead in Test and domestic cricket to compute team ratings. The ratings are calculated independently of effects such as home advantage and quantify overall team performance relative to the average rating. They provide a robust measure of team quality and are not sensitive to the extraneous effects that may disproportionately impact on team performance. As a consequence, the thesis recommends that new methods be investigated to officially rate and rank teams in international cricket competitions. The team ratings also form the basis of a proposed outcome prediction model that can be instituted in Test cricket. The thesis established that a surprising trend has emerged in Test cricket, which confirmed that the team batting second, in general, has enjoyed a distinct winning advantage over its opposition. Accordingly, the thesis ascertained that relative strength during the final rather than penultimate innings significantly affected match outcomes and recommends that i teams, when winning the coin toss, expose their strongest asset, whether this be batting or bowling, in the final innings. ii ACKNOWLEDGEMENTS I would like to wholeheartedly thank my primary supervisor, Professor Stephen Clarke for his insightful guidance and tireless support over a long period of time. I will always be indebted to his sustained encouragement and finely tuned perceptive abilities, which meant that I was able to optimise my strengths and ultimately produce a thesis I am very proud of. I would also like to thank my secondary supervisor Julie Pallant who provided constructive assistance when her counsel was sought. Finally, I would like to sincerely thank my wife Sonia who supported my sustained endeavour with encouragement, enthusiasm and patience. iii SIGNED DECLARATION This thesis: • Contains no material which has been accepted for the award of any other degree or diploma, except where due reference is made in the text of the thesis • To the best of my knowledge, this thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis Signed: _______________________________ Dated: ________________________________ iv TABLE OF CONTENTS Chapter 1 Introduction and literature review 1 1.1 Overview 1 1.2 Structural principles adopted for the thesis 2 1.3 The structure of cricket 5 1.4 The general analysis of cricket 7 1.5 The HA effect and team ratings in organised team sports 9 1.6 The HA effect in cricket 20 1.7 Team ratings in cricket 23 1.8 Application of the Duckworth and Lewis method 26 Chapter 2 Exploratory analysis of domestic cricket 29 2.1 Introduction 29 2.2 The Pura Cup competition 29 2.3 The Frizzell County Championship 40 2.4 Conclusions 45 Chapter 3 Measuring and interpreting victory margins in ODI cricket 47 3.1 Introduction 47 3.2 The Duckworth and Lewis method 49 3.3 Calculating a projected score for Team 2 51 3.4 Comparison of the first and second innings 52 3.5 An examination of methodology 55 3.6 Creating a victory margin 57 3.7 Recent changes to the D/L method 61 3.8 Conclusions 67 Chapter 4 Exploratory analysis of ODI and Test cricket 69 4.1 Introduction 69 4.2 Exploratory analysis of ODI cricket 70 v 4.2.1 General analysis 70 4.2.2 Analysis of the day/night effect 78 4.2.3 Analysis of regional effects 80 4.3 Exploratory analysis of Test cricket 83 4.3.1 General analysis 83 4.3.2 Analysis of regional effects 96 4.4 Conclusions 98 Chapter 5 Modelling domestic cricket 100 5.1 Introduction 100 5.2 Modelling the Pura Cup competition 101 5.2.1 Fitting a binary logistic model to the match outcomes 101 5.2.2 Fitting an multinomial (ordinal) logistic model to the point-margins 105 5.2.3 Fitting a linear model to the first innings run differentials 114 5.3 Modelling the Frizzell County Championship 117 5.3.1 Fitting a multinomial (ordinal) logistic model to the match outcomes 117 5.3.2 Quantifying first innings performance factors 120 5.4 Comparison of the Pura Cup and the Frizzell County Championship 123 5.5 Conclusions 124 Chapter 6 Modelling ODI cricket 127 6.1 Introduction 127 6.2 Fitting a binary logistic model to the match outcomes 128 6.3 Modelling the victory margins 132 6.3.1 Fitting a linear model to the victory margins 132 6.3.2 Period 1992/93-1997 133 6.3.3 Period 1997/98-2001 134 6.4 Estimating probabilities 137 6.4.1 Examining residuals 137 6.4.2 Period 1992/93-1997 138 6.4.3 Period 1997/98-2001 140 vi 6.5 Modelling the ICC Cricket World Cup 143 6.5.1 Introduction 143 6.5.2 Fitting a linear model to the victory margins 144 6.6 Comparison of ODI ratings across study periods 147 6.7 Conclusions 148 Chapter 7 Modelling Test cricket 150 7.1 Introduction 150 7.2 Fitting a linear model to the first innings run differentials 151 7.2.1 Introduction 151 7.2.2 Period 1992-1997 152 7.2.3 Period 1997/98-2001 156 7.3 Comparison of first innings performances across study periods 159 7.4 Fitting a multinomial (ordinal) logistic model to the match outcomes 160 7.4.1 Introduction 160 7.4.2 Period 1992-1997 162 7.4.3 Period 1997/98-2001 167 7.5 Quantifying the effect of batting second 172 7.6 Conclusions 177 Chapter 8 An attack and defence model for ODI cricket 180 8.1 Introduction 180 8.2 Fitting a linear attack and defence model to the innings scores 181 8.2.1 Introduction 181 8.2.2 Period 1992/93-1997 182 8.2.3 Period 1997/98-2001 188 8.3 Fitting a multinomial (ordinal) logistic model to the match outcomes 194 8.4 Estimating probabilities 196 8.4.1 Introduction 196 8.4.2 Period 1992/93-1997 197 8.4.3 Period 1997/98-2001 200 vii 8.5 Comparison across study periods 203 8.6 Conclusions 207 Chapter 9 An attack and defence model for Test cricket 209 9.1 Introduction 209 9.2 Fitting a linear attack and defence model to the first innings scores 209 9.2.1 Introduction 209 9.2.2 Period 1992-1997 210 9.2.3 Period 1997/98 to 2001 218 9.3 Comparison of first innings performances across study periods 224 9.4 Fitting a multinomial (ordinal) logistic model to match outcomes 227 9.4.1 Introduction 227 9.4.2 Period 1992-1997 229 9.4.3 Period 1997/98-2001 231 9.5 Quantifying the effect of batting second 235 9.6 Conclusions 242 Chapter 10 A model for predicting match outcomes in Test cricket 244 10.1 Introduction 244 10.2 Setting up a prediction algorithm 244 10.3 Fitting a linear model to the first innings run differentials 246 10.4 Fitting a multinomial (ordinal) logistic model to the match outcomes 249 10.5 Applying the prediction algorithm 253 10.6 Conclusions 259 Chapter 11 Final conclusions 261 11.1 Introduction 261 11.2 Domestic cricket 263 11.3 ODI cricket 267 11.4 Test cricket 272 11.5 Team ratings in ODI, Test and domestic cricket 274 viii 11.6 Quantifying the home advantage effect across team sports 279 11.7 Limitations of the investigation and recommendations for further 281 research 11.8 Closing statement 285 References 286 List of publications 293 ix LIST OF FIGURES Figure 2.1. HA in points by year for the Pura Cup competition for the period 37 1990-2000 Figure 2.2. HA in points by year for the Frizzell County Championship for the 45 period 2000-2002 Figure 3.1. Distribution of scores for the 1999 ICC Cricket World Cup 55 Figure 3.2. Distribution of the victory margins for Team 1 and Team 2 in the 61 1999 ICC Cricket World Cup Figure 3.3. Projected Team 2 scores based on a truncated score of 200 with 10 65 overs remaining Figure 3.4.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages316 Page
-
File Size-