Corrosion Protection of Aluminum Coated with a Polymer Matrix in Presence and Absence of Conductive Polymer

Corrosion Protection of Aluminum Coated with a Polymer Matrix in Presence and Absence of Conductive Polymer

DEGREE PROJECT IN CHEMICAL SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Corrosion protection of aluminum coated with a polymer matrix in presence and absence of conductive polymer MOHAMED HASSAN ABDI KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES IN CHEMISTRY, BIOTECHNOLOGY 1AND HEALTH DEGREE PROJECT IN CHEMICAL SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Abstract Aluminum and aluminum alloys have rather good corrosion resistance, but these materials can still corrode. Metal corrosion is never wanted, and it can lead to disastrous outcomes in various industries and applications. There are different methods to protects aluminum and its alloys from corrosion, such as anodization and the use of various coatings techniques. Not a lot of research have been done on aluminum coated with an organic coating containing conductive polymer. Even less is known about aluminum coated with a waterborne polymer matrix containing conductive polymer. Three systems were investigated in my diploma thesis work regarding their anti-corrosion properties. To this end electrochemical impedance spectroscopy, open circuit potential and potentiodynamic polarization were utilized, and also some atomic force microscopy, AFM, measurements were done. Aluminum coated with a waterborne polymer matrix in the absence of PANI had a good corrosion protection at first but reduced barrier properties over time in 1 M NaCl. The shelf-life of the waterborne polymer matrix in the absence of PANI was also briefly investigated. It was shown that a freshly made waterborne polymer matrix exhibited better corrosion protection than a 2 years old waterborne polymer matrix stored at room temperature. Aluminum coated with the waterborne polymer matrix in the presence of PANI showed signs of active corrosion protection initially, but it transitioned to passive corrosion protection with time. Atomic force microscopy was used in various modes to gain insight on the waterborne polymer matrix in the presence of PANI. A conducting network was observed in the AFM measurements and confocal light optical microscopy indeed suggested that this would be the case. The conducting network in the waterborne polymer matrix could explain the active corrosion protection observed initially. More studies are needed to gain insight on the chemical processes at the interface of the aluminum alloy and the waterborne polymer matrix in presence of PANI. 2 DEGREE PROJECT IN CHEMICAL SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Sammanfattning Aluminium och aluminiumlegeringar har ganska bra korrosionsbeständighet, men dessa material kan fortfarande korrodera. Metallkorrosion är aldrig önskvärt och det kan leda till katastrofala resultat i olika branscher och applikationer. Det finns olika metoder för att skydda aluminium och dess legeringar från korrosion, såsom anodisering och användning av olika beläggningstekniker. Inte mycket forskning har gjorts på aluminium belagd med en organisk beläggning innehållande ledande polymer. Ännu mindre är känt om aluminium belagt med en vattenbaserad polymer matris innehållande ledande polymer. Tre system undersöktes i mitt examensarbete om deras korrosionsskyddande egenskaper. För detta ändamål användes elektrokemisk impedansspektroskopi, öppen kretspotential och potentiodynamisk polarisering, samt gjordes även en del atomkraftsmikroskopi, AFM, mätningar. Aluminium belagt med en vattenbaserad polymer matris i frånvaro av PANI hade ett bra korrosionsskydd först men reducerade barriäregenskaper över tiden i 1 M NaCl. Hållbarheten för den vattenbaserade polymer matrisen i frånvaro av PANI undersöktes också kort. Det visades att en nygjord vattenbaserad polymer matris uppvisade bättre korrosionsskydd än en 2 år gammal vattenbaserad polymer matris lagrad vid rumstemperatur. Aluminium belagt med den vattenbaserade polymer matrisen i närvaro av PANI visade initialt tecken på aktivt korrosionsskydd men övergick till passivt korrosionsskydd med tiden. Atomkraftmikroskop användes i olika lägen för att få insikt om den vattenbaserade polymer matrisen i närvaro av PANI. Ett ledande nätverk observerades i AFM-mätningarna och konfokalt ljusmikroskop antydde verkligen att detta skulle vara fallet. Det ledande nätverket i den vattenbaserade polymer matrisen kan förklara det aktiva korrosionsskyddet som observerades initialt. Fler studier behövs för att få insikt om de kemiska processerna vid gränssnittet mellan aluminiumlegeringen och den vattenbaserade polymer matrisen i närvaro av PANI. 3 DEGREE PROJECT IN CHEMICAL SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Table of contents 1. Introduction ............................................................................................................... 6 1.1. Aluminum and Aluminum alloys ..................................................................................... 6 1.2. Corrosion mechanisms .................................................................................................... 6 1.2.1. Motivation and scope ................................................................................................. 7 2. Literature review ........................................................................................................ 8 2.1. Introduction .................................................................................................................... 8 2.2. Protective methods for aluminum and its alloys ............................................................. 9 2.2.1. Anodization ..................................................................................................................................... 9 2.2.2. Cathodic protection ........................................................................................................................ 9 2.2.3. Coating techniques ........................................................................................................................ 10 2.2.3.1. Metallic coating techniques ................................................................................................. 10 2.2.3.2. Other coating technique ...................................................................................................... 10 2.2.3.3. Organic coatings .................................................................................................................. 12 2.2.3.4. Sol-gel coatings .................................................................................................................... 12 2.2.3.5. Corrosion inhibitors ............................................................................................................. 13 3. Aluminum alloy 6xxx series ....................................................................................... 13 3.1. Microstructure ................................................................................................................... 14 3.2. Corrosion mechanisms of aluminum alloys ......................................................................... 15 4. Conductive polymer PANI ......................................................................................... 17 5. Polymer matrix ......................................................................................................... 18 6. Materials .................................................................................................................. 18 6.1. Aluminum alloy 6060 .................................................................................................... 18 6.1.1. Preparation of Aluminum alloy 6060 surfaces .............................................................................. 19 6.2. Polymer matrix ............................................................................................................. 19 6.2.1. Preparation of polymer coating .................................................................................................... 19 6.2.2. Preparation of polymer coating containing conductive polymer ................................................. 19 7. Experimental Methods ............................................................................................. 20 7.1. Open Circuit Potential ................................................................................................... 20 7.2. Electrochemical Impedance Spectroscopy ..................................................................... 21 7.3. Potentiodynamic Polarization ....................................................................................... 25 7.4. Atomic Force Microscopy, AFM ..................................................................................... 26 5.4.1 Conductive AFM, C-AFM ..................................................................................................................... 27 5.4.2 Peak Force Tuna, PF-TUNA AFM ......................................................................................................... 27 5.4.3 Intermodulation AFM, Im-AFM .......................................................................................................... 27 8. Light optical microcopy ............................................................................................. 28 9. Results and Discussion .............................................................................................. 29 4 DEGREE PROJECT IN CHEMICAL SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    51 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us