Qubit Fluxonium Transmon

Qubit Fluxonium Transmon

Transmon and Fluxonium Qubit Emanuel Hubenschmid Seminar: Superconducting quantum hardware for quantum computing 19.06.2020 What is so special? Google (53 qubits processor Sycamore) IBM (4 qubit prozessor) F. Arute et al. “Quantum supremacy using a programmable superconducting processor”. Nature 574.7779 (Oct. 2019), 505. J. M. Gambetta et al. “Building logical qubits in a superconducting quantum computing system”. npj Quantum Information 3.1 (Jan. 2017). 2 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid Contents 1 Introduction 1.1 The DiVincenzo criteria 1.2 Some familiar qubits 2 The transmon qubit 2.1 Characterization of the qubit 2.2 Initialization, control and read-out 2.3 Relaxation and decoherence 3 The fluxonium qubit 3.1 Characterization of the qubit 3.2 Initialization, control and read-out 3.3 Relaxation and decoherence 4 Summary 3 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 1 Introduction - 1.1 The DiVincenzo criteria 1 Introduction 1.1 The DiVincenzo criteria 4 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid j i 2 H⊗n ! ⊗n j i 2. Initializability of the qubits Ψ qubit i=0 0 3. Decoherence times much longer than the gate operation time T1;T2 ≫ τ 4. A “universal” set of quantum gates H ,… 0 5. A qubit-specific measurement capability 1 Introduction - 1.1 The DiVincenzo criteria The DiVincenzo criteria 1. Scalable system with well characterized qubits H = Hqubit ⊗ Hr D. P. DiVincenzo. “The Physical Implementation of Quantum Computation”. Fortschritte der Physik 48.9-11 (Sept. 2000), 771. 5 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 3. Decoherence times much longer than the gate operation time T1;T2 ≫ τ 4. A “universal” set of quantum gates H ,… 0 5. A qubit-specific measurement capability 1 Introduction - 1.1 The DiVincenzo criteria The DiVincenzo criteria 1. Scalable system with well characterized qubits H = Hqubit ⊗ Hr j i 2 H⊗n ! ⊗n j i 2. Initializability of the qubits Ψ qubit i=0 0 D. P. DiVincenzo. “The Physical Implementation of Quantum Computation”. Fortschritte der Physik 48.9-11 (Sept. 2000), 771. 5 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 4. A “universal” set of quantum gates H ,… 0 5. A qubit-specific measurement capability 1 Introduction - 1.1 The DiVincenzo criteria The DiVincenzo criteria 1. Scalable system with well characterized qubits H = Hqubit ⊗ Hr j i 2 H⊗n ! ⊗n j i 2. Initializability of the qubits Ψ qubit i=0 0 3. Decoherence times much longer than the gate operation time T1;T2 ≫ τ D. P. DiVincenzo. “The Physical Implementation of Quantum Computation”. Fortschritte der Physik 48.9-11 (Sept. 2000), 771. 5 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 0 5. A qubit-specific measurement capability 1 Introduction - 1.1 The DiVincenzo criteria The DiVincenzo criteria 1. Scalable system with well characterized qubits H = Hqubit ⊗ Hr j i 2 H⊗n ! ⊗n j i 2. Initializability of the qubits Ψ qubit i=0 0 3. Decoherence times much longer than the gate operation time T1;T2 ≫ τ 4. A “universal” set of quantum gates H ,… D. P. DiVincenzo. “The Physical Implementation of Quantum Computation”. Fortschritte der Physik 48.9-11 (Sept. 2000), 771. 5 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 1 Introduction - 1.1 The DiVincenzo criteria The DiVincenzo criteria 1. Scalable system with well characterized qubits H = Hqubit ⊗ Hr j i 2 H⊗n ! ⊗n j i 2. Initializability of the qubits Ψ qubit i=0 0 3. Decoherence times much longer than the gate operation time T1;T2 ≫ τ 4. A “universal” set of quantum gates H ,… 0 5. A qubit-specific measurement capability D. P. DiVincenzo. “The Physical Implementation of Quantum Computation”. Fortschritte der Physik 48.9-11 (Sept. 2000), 771. 5 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 1 Introduction - 1.2 Some familiar qubits 1 Introduction 1.2 Some familiar qubits 6 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 1 H^ = 4E (^n − n )2 − E cos' ^ + E (' ^ − 2πϕ/ϕ )2 C g J 2 L 0 EL = 0 EL ≪ EJ, ng = 0 2 3 EJ=EC ∼ 1 EJ=EC ∼ 10 − 10 1 Introduction - 1.2 Some familiar qubits Comparison of qubits Charge qubit Flux qubit C g E ;C ng J J U V U g EJ;CJ ϕ ' ' G. Catelani et al. “Relaxation and frequency shifts induced by quasiparticles in superconducting qubits”. Physical Review B 84.6 (Aug. 2011). 7 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 2 3 EJ=EC ∼ 1 EJ=EC ∼ 10 − 10 1 Introduction - 1.2 Some familiar qubits Comparison of qubits Charge qubit Flux qubit C g E ;C ng J J U V U g EJ;CJ ϕ ' ' EL = 0 EL ≪ EJ, ng = 0 1 H^ = 4E (^n − n )2 − E cos' ^ + E (' ^ − 2πϕ/ϕ )2 C g J 2 L 0 G. Catelani et al. “Relaxation and frequency shifts induced by quasiparticles in superconducting qubits”. Physical Review B 84.6 (Aug. 2011). 7 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 1 Introduction - 1.2 Some familiar qubits Comparison of qubits Charge qubit Flux qubit C g E ;C ng J J U V U g EJ;CJ ϕ ' ' EL = 0 EL ≪ EJ, ng = 0 2 3 EJ=EC ∼ 1 EJ=EC ∼ 10 − 10 1 H^ = 4E (^n − n )2 − E cos' ^ + E (' ^ − 2πϕ/ϕ )2 C g J 2 L 0 G. Catelani et al. “Relaxation and frequency shifts induced by quasiparticles in superconducting qubits”. Physical Review B 84.6 (Aug. 2011). 7 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid Solution: Transmon qubit Fluxonium qubit Increase EJ=EC with large shunting capacitance Small junction shunted by an JJ array EJ=EC ∼ 100 EJ=EC ∼ 1 − 10 1 Introduction - 1.2 Some familiar qubits Comparison of qubits Problem: Single Cooper pair circuits decohere due to low frequency offset charge noise J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). V. E. Manucharyan et al. “Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets”. Science 326.5949 (Oct. 2009), 113. 8 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 1 Introduction - 1.2 Some familiar qubits Comparison of qubits Problem: Single Cooper pair circuits decohere due to low frequency offset charge noise Solution: Transmon qubit Fluxonium qubit Increase EJ=EC with large shunting capacitance Small junction shunted by an JJ array EJ=EC ∼ 100 EJ=EC ∼ 1 − 10 J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). V. E. Manucharyan et al. “Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets”. Science 326.5949 (Oct. 2009), 113. 8 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 2 The transmon qubit - 2.1 Characterization of the qubit 2 The transmon qubit 2.1 Characterization of the qubit 9 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 2 The transmon qubit - 2.1 Characterization of the qubit The device J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). 10 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 2 The transmon qubit - 2.1 Characterization of the qubit The capacitance network J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). 11 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 2 The transmon qubit - 2.1 Characterization of the qubit The capacitance network J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). 11 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid Thévenin-Theorem 2 The transmon qubit - 2.1 Characterization of the qubit The capacitance network J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). 12 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid 2 The transmon qubit - 2.1 Characterization of the qubit The capacitance network Thévenin-Theorem J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). 12 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid Effective offset charge: ng = Qr=2e + CgVg=2e Charging energy: Josephson energy: 2 E = E jcos(πΦ=Φ )j EC = e =2CΣ J J,max 0 CΣ = CJ + CB + Cg 2 The transmon qubit - 2.1 Characterization of the qubit The capacitance network 2 H^ = 4EC(^n − ng) − EJ cos' ^ J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). 12 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid Effective offset charge: ng = Qr=2e + CgVg=2e Josephson energy: EJ = EJ,max jcos(πΦ=Φ0)j 2 The transmon qubit - 2.1 Characterization of the qubit The capacitance network 2 H^ = 4EC(^n − ng) − EJ cos' ^ Charging energy: 2 EC = e =2CΣ CΣ = CJ + CB + Cg J. Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. Physical Review A 76.4 (Oct. 2007). 12 / 33 19.06.2020 Transmon and Fluxonium Qubit Emanuel Hubenschmid Effective offset charge: ng = Qr=2e + CgVg=2e 2 The transmon qubit - 2.1 Characterization of the qubit The capacitance network 2 H^ = 4EC(^n − ng) − EJ cos' ^ Charging energy: Josephson energy: 2 E = E jcos(πΦ=Φ )j EC = e =2CΣ J J,max 0 CΣ = CJ + CB + Cg J.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    106 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us