MULCAHY-THESIS-2015.Pdf

MULCAHY-THESIS-2015.Pdf

Copyright by Francis Joseph Mulcahy 2015 The Thesis Committee for Francis Joseph Mulcahy Certifies that this is the approved version of the following thesis: Use of High Resolution 3D Seismic Data to Evaluate Quaternary Valley Evolution History during Transgression, Offshore San Luis Pass, Gulf of Mexico APPROVED BY SUPERVISING COMMITTEE: Supervisor: Timothy Meckel David Mohrig Sean Gulick Use of High Resolution 3D Seismic Data to Evaluate Quaternary Valley Evolution History during Transgression, Offshore San Luis Pass, Gulf of Mexico by Francis Joseph Mulcahy, B.S., M.E. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geological Sciences The University of Texas at Austin May 2015 Abstract Use of High Resolution 3D Seismic Data to Evaluate Quaternary Valley Evolution History during Transgression, Offshore San Luis Pass, Gulf of Mexico Francis Joseph Mulcahy, MSGeoSci The University of Texas at Austin, 2015 Supervisor: Timothy Meckel A novel, shallow-investigation, high-resolution 3D (HR3D) seismic acquisition system has been employed, for the first time in the Gulf of Mexico, to characterize CO2 storage potential and de-risk targets for sequestration. HR3D data can image detailed depositional, architectural, and structural features in the shallow subsurface that have previously been below seismic resolution and/or excluded from industry surveys, which are optimized for deeper targets. One HR3D survey was collected in 2013 offshore San Luis Pass, TX and covers an area of 31.5 km2. The dataset images the upper 500 meters of stratigraphy with unprecedented detail -- peak frequency of approximately 150Hz (eight 25m cables, spaced at 12.5m, 6.25m by 6.25m bin size). Imaged within this dataset at ~100ms TWTT, is a mappable erosional unconformity that is interpreted to be associated with the Brazos River system during the ~130ka glacial-eustatic lowstand and following transgression. Through the analysis of horizon slices and the geometries of the valley form and its dendritic features, the evolution history of the valley system during a transgressive episode can be characterized. Observations indicate that the system evolves from a lowstand meandering channel system with clear point-bar deposits to a transgressive estuary characterized by dendritic erosional features that is eventually flooded. These 3D data represent an exceptional example of a lowstand to transgressive transition and the sedimentary processes and architectures that characterize each interval. A seismically discontinuous zone is observed within the HR3D volume that is interpreted to be a gas chimney system emanating from a tested dry, 3-way structure in the lower Miocene (1.5km depth). Within the shallowest intervals (<100m) and at the top of the chimney zone, seismic attribute analysis reveals several high amplitude anomalies that iv are predominantly located within interpreted interfluvial zones. The anomalies fit into our stratigraphic and structural interpretation of the interval, in that they appear to sit at local structural, fault bounded highs within deposits interpreted to be coarser grained and are overlain by finer grained, transgressive deposits. These observations support the interpretation of these amplitude anomalies as shallow gas accumulations derived from a deeper, depleted gas reservoir. Interestingly, point-bar deposits as well as channel scour deposits within the same interval show no sign of charge, suggesting that these are either isolated from the migration flowpath, or too fine-grained to host significant saturations. v Table of Contents List of Figures ...................................................................................................... viii Introduction ..............................................................................................................1 1 Geological Setting and Background .....................................................................2 1.1 Study Area ................................................................................................2 1.2 Quaternary Geology ..................................................................................3 1.3 Basin History and Structural Styles ..........................................................6 1.4 Stratigraphic Framework ..........................................................................7 2. High Resolution 3D seismic dataset (PCable) ...................................................11 2.1 System Specifications .............................................................................12 2.2 Processing Workflow ..............................................................................15 2.3 Resolution ...............................................................................................15 2.4 Seafloor Energy and Dataset Challenges ................................................20 2.5 Receiver Accuracy ..................................................................................23 3. Seismic Mapping ...............................................................................................25 3.1 Interpretation Methodology ....................................................................25 3.2 Post-Stack Seismic Attributes .................................................................30 Coherency ............................................................................................30 RMS Amplitude ...................................................................................31 Sweetness .............................................................................................31 Spectral Decomposition and Frequency Attributes .............................32 Relative Acoustic Impedance ..............................................................32 3.3 Valley Evolution .....................................................................................33 3.4 Seismic Facies .........................................................................................39 3.5 Seismic Velocities ...................................................................................40 3.6 Analogues ...............................................................................................43 3.7 Discussion and Interpretation .................................................................46 vi 4. Amplitude Anomalies ........................................................................................50 4.1 Introduction to Seismic Amplitudes .......................................................51 4.2.1 Seismic Expression – 2D and vertical .................................................53 4.2.2 Seismic Expression – Plan view attributes and 3D ..............................56 4.3 Interpretation within Stratigraphic Framework ......................................59 4.4 Shallow Sediment Coring .......................................................................63 4.5 Modeling .................................................................................................69 4.6 AVO attempt ...........................................................................................73 4.7 Discussion and Conclusions ...................................................................75 5. Geomorphology and Process .............................................................................79 5.1 Overview .................................................................................................79 5.2 Incised Valley Morphology ....................................................................80 5.3 Analogues: Modern and Seismic ............................................................81 5.3 Method ....................................................................................................84 5.4 Results .....................................................................................................87 5.5 Geomorphology Discussion ....................................................................90 Conclusions: .........................................................................................93 6. Discussion ..........................................................................................................95 6.1 Quaternary Stratigraphy ..........................................................................95 6.2 Fluid Flow and Accumulation ................................................................99 6.3 Implications for Reservoir Characterization .........................................100 7. Conclusions ......................................................................................................102 Mapping .............................................................................................102 Amplitude Anomalies ........................................................................102 Seismic Geomorphology ....................................................................103 References ............................................................................................................104 vii List of Figures Figure 1.1 - Regional satellite image highlighting the location of the 2013 HR3D survey. Brazos River and Colorado River hydrologic zones are mapped in blue. Images modified from Google Earth and Texas Water Development Board. ...........................................................................3 Figure 1.2 - Composite Oxygen Isotope curve used as a proxy for sea level. Modified

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    122 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us