Introduction to Modern Physics

Introduction to Modern Physics

Introduction to Modern Physics By Charles W Fay Introduction to Modern Physics: Physics 311 Lecture Notes Ferris State University unpublished supplement to the text Department of Physical Science 2011 Table of Contents I The Birth of Modern Physics 1 1 What is Physics 2 1.1 Classical Physics and Modern Physics . 2 1.2 Assumptions of Science . 3 2 Classical Mechanics 5 2.1 Physics Before the 19th Century . 5 2.2 Experiment and Observables . 6 2.3 Inertial Reference Frames (IRF) . 9 2.3.1 Symmetries . 9 3 Classical Electro-Magnetism 10 3.1 Maxwell and Electro-Magnetism . 10 3.1.1 Maxwell's Equations in the integral form . 10 3.1.2 Maxwell's Equations in the derivative form . 10 3.2 Reference Frames? . 12 3.3 Implications of the Speed of Light . 12 3.4 Vector Calculus . 12 3.5 EM and Optics . 13 II Relativity 14 4 Special Relativity I 15 4.1 Two Postulates . 15 4.1.1 Simultaneity . 16 4.1.2 Measurement of Length . 16 4.1.3 Simultaneity in moving frames . 17 4.2 Building a suitable transformation: Taken from Relativity by Einstein . 17 4.3 Length Contraction . 20 4.3.1 Example: Length Contraction . 21 4.4 Time Dilation . 21 4.4.1 Example: Time Dilation . 21 4.4.2 Graphical derivation of Time Dilation . 22 4.4.3 Proper length and proper time . 22 4.4.4 Time discrepancy of an event synchronized in K as viewed in K0 sepa- rated by x2 − x1 ......................... 23 4.4.5 Time discrepancy of events separated by ∆t and ∆x in K as viewed by K0.................................. 23 ii 4.5 Doppler Effect . 23 4.5.1 Example: Doppler Effect . 25 4.6 Twin Paradox . 25 5 Special Relativity II 26 5.1 Velocity Transformations . 26 5.1.1 Example: transforming the velocity of an object moving at the speed of light . 27 5.1.2 Transformation of the angle of a light ray . 28 5.2 Transformation of the Energy of Light Rays . 28 5.3 Does the Inertia of a Body depend upon its Energy-content? . 29 5.4 Momentum . 30 6 Four vectors and Lorentz invariance 33 6.1 Momentum . 33 6.1.1 Invariant interval . 34 6.1.2 four-velocity . 37 6.1.3 Four-momentum . 37 6.1.4 Conservation of Momentum . 38 6.1.5 Classical momentum conservation under a Galilean transformation . 38 6.1.6 Relativistic Momentum Conservation . 39 6.1.7 Particles of zero mass . 41 6.2 Mechanical Laws . 42 6.2.1 Motion under a constant force . 43 6.2.2 Cyclotron Motion . 43 6.3 Proper Force . 44 7 General Relativity 45 7.1 Absolute Acceleration? . 45 7.2 2 principles of General Relativity . 45 7.2.1 Principle of Covarience . 46 7.2.2 Results of a transforming rotation in S.R. 46 7.2.3 Principle of Equivalence . 47 7.3 Experimental support for General Relativity . 48 7.3.1 Black Holes . 48 III Origins of Quantum Mechanics 50 8 QMI: Quantum Hypothesis 51 8.1 The energy density . 53 8.1.1 number density of modes in a cavity . 54 8.1.2 Solution by Micro-canonical Ensemble . 55 iii 8.1.3 Solution by canonical ensemble . 57 8.2 Einstein and the Photoelectric Effect . 59 8.2.1 The Photoelectric Effect . 60 9 QMII: The Atom 65 9.1 The Electron . 65 9.1.1 J.J. Thomson discovers the electron . 65 9.1.2 Fundamental Charge: Robert Millikin . 69 9.1.3 Measuring M by terminal speed . 70 9.2 The Nucleus: Rutherford . 71 9.2.1 The Rutherford Formula . 72 9.3 The Bohr Model . 75 9.3.1 The Bohr radius . 76 9.3.2 The energy of the Bohr atom . 77 9.3.3 Generalizing the Bohr Model . 79 9.4 The Neutron . 80 10 QM III: Elements of Quantum Theory 81 10.1 Compton Scattering . 81 10.1.1 Example: Compton Scattering . 83 10.2 de Broglie . 84 10.2.1 Example: de Broglie wavelength . 84 10.2.2 Quantization of angular momentum . 85 10.3 Wave-particle duality . 85 10.3.1 Young's Double slit Experiment . 85 10.4 Probability Waves . 86 10.4.1 Example: Probability density . 87 10.5 Electron wave packets . 87 10.5.1 Heisenberg Uncertainty . 89 10.5.2 Schroedinger's Equation . 90 10.5.3 Particle in a one-dimensional box . 91 10.5.4 Tunneling . 93 10.6 Spin . 93 10.7 The Copenhagen Interpretation . 94 11 QM IV: Atomic Structure 95 11.1 Multi-electron Atoms . 96 11.1.1 Pauli Exclusion Principle . 96 11.2 Periodic Table . 96 11.3 Heisenberg Uncertainty . 97 11.4 Relativistic Quantum Mechanics . 98 11.5 Nuclear Structure . 98 11.5.1 Nuclear Force . 99 iv 11.6 Nuclear Notation . 99 11.7 The Laser . 100 11.7.1 Absorption and Spontaneous Emission . 100 11.7.2 Holography . 100 12 QM V: Radiation 101 12.1 Radioactivity . 101 12.1.1 Alpha Decay . 101 12.1.2 Example . 102 12.1.3 Beta Decay . 102 12.1.4 Gamma Decay . 104 12.1.5 Example . 105 12.1.6 Radiation Penetration . 105 12.2 Half-life . 106 12.2.1 Example: Sr-90 . 106 12.2.2 Radioactive Dating . 107 12.2.3 Example: Carbon 14 dating . 108 12.3 Nuclear Stability . 108 12.3.1 Binding Energy . 110 12.4 Radiation Detection.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    157 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us