Adaptation of E. coli towards Tryptophan analog usage vorgelegt von Master of Science in Chemie Stefan Oehm aus Neumarkt i.d.OPf. von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss Vorsitzende: Prof. Dr. rer. nat. Maria Andrea Mroginski Gutachter: Prof. Dr. rer. nat. Nediljko Budisa Gutachter: Prof. Dr. rer. nat. Rupert Mutzel Tag der wissenschaftlichen Aussprache: 11.07.2016 Berlin 2016 Look what I have found A seashell in a sea of shells I’m good at planting my own seeds To sprout endless hell It’s dark like Poe Dredg - Planting Seeds Parts of this work were published as listed below Oehm, S., Hösl, M., Peil, L. , Semmler, T., Rappsilber, J., Budisa, N. Mechanisms of an adap- tive evolution experiment towards non-canonical amino acid usage manuscript in preparation Hösl, M. G., Oehm, S., Durkin, P., Peil, L., Rappsilber, J., Rinehart, J., Darmon, E., Leach, D., Söll, D., Budisa, N., Chemical Evolution of a Bacterium’s Proteome Angewandte Chemie - International Edition, 2015, 54(34), 10030-34 Parts of this work were presented as listed below Poster presentation at the Protein Synthesis Meeting, St. Augustine, USA – June 2015 Project talk at the GRK Fluorine graduate school, Berlin, Deutschland – May 2015 Project talk at the COST CM1004 Spring Meeting, Berlin, Deutschland – April 2013 Contents Summary I Zusammenfassung III Abbreviations V List of Figures IX List of Tables XI 1 Introduction 1 1.1 The Genetic Code . 1 1.2 Genetic code engineering . 5 1.2.1 Ambiguous decoding . 5 1.2.2 Stop and sense codon suppression . 7 1.2.3 Codon reassignment . 10 1.2.4 Genetic code reduction . 11 1.3 Xenobiology . 13 1.3.1 Biocontainment through genetically recoded organisms . 14 1.3.2 Chemical evolution of a bacterial genome . 15 1.3.3 Chemical evolution of a bacterial proteome . 16 1.4 Adaptive evolution experiments . 18 1.4.1 General stress response as an target in evolution experiments . 20 2 Aim of the study 23 3 Results 25 3.1 Choice of the analog and activation by its aaRS . 25 3.1.1 Trp and its surrogates . 25 3.1.2 Activation of [3,2]Tpa by the endogenous TrpRS . 27 3.2 Experimental configuration of the starting strains and the growth medium 28 3.2.1 Genetic configurations . 28 3.2.1.1 MT0 . 28 3.2.1.2 TUB00 . 29 3.2.1.3 Differences in strain setup of MT0 and TUB00 . 29 3.2.2 Growth medium . 30 3.3 Adaptive evolution experiment with MT0 . 31 3.3.1 Evaluation of growth in different media of intermediate isolates and the final evolvate MT20 . 32 3.3.2 Analysis of the proteome wide incorporation of β-(thieno[3,2-b]pyrrolyl)- L-alanine ([3,2]Tpa) . 34 3.3.3 Initial characterization of derivates . 36 3.4 Adaptive evolution experiment with TUB00 . 39 3.4.1 Growth behavior of TUB00 and adapted isolates . 41 3.4.2 Proteomic analysis of ancestral and evolved derivatives . 42 3.4.2.1 Knockout of lysA and argA in TUB0 for SILAC analysis . 42 3.4.2.2 Overview of the SILAC experiments . 43 3.4.2.3 Effect of β-thieno[3,2-b]-pyrrole ([3,2]Tp) addition on TUB00 . 45 3.4.2.4 Up- and Downregulation of proteins in the evolved derivatives . 49 3.4.3 Next generation sequencing of TUB13 and its precursors . 53 3.4.3.1 Mutation rate in the AEE . 53 3.4.3.2 Detected mutations in the evolvates . 54 3.4.3.3 Appearance and fixation of selected mutations in the AEE experiment . 57 3.4.4 Analysis of mutations of adapted TUB00 . 59 3.4.4.1 Clustering of mutations . 59 3.4.4.2 Stringent response related mutations . 60 3.4.4.3 Mutations in proteases . 63 3.4.5 Adaptation model derived from Proteomics and Genomics . 64 3.5 Towards Biocontainment of evolved derivatives . 67 3.5.1 Genetic replacement system . 67 3.5.2 PylRS-library construction . 68 3.5.3 Establishment of a genetic replacement system for tryptophan and analogs 71 4 Conclusion and Outlook 75 5 Materials 77 5.1 Media and supplements . 77 5.2 Microoganisms . 80 5.3 Buffers and solutions . 81 5.3.1 Primer and Plasmids . 83 5.3.1.1 Primer . 83 5.3.1.2 Plasmids . 85 6 Methods 87 6.1 Molecular biological methods . 87 6.2 Microbiological methods . 90 6.3 Protein expression and purification . 93 6.4 Enzymatic synthesis of [3,2]Tpa . 95 6.5 Biochemical methods . 95 6.6 Analytical methods . 96 6.7 Bioinformatic analysis . 100 7 Appendix 101 7.1 Adaptive evolution experiment with MT0 and TUB00 . 101 7.1.1 Defining metabolic blocks . 101 7.1.2 Medium composition MT0-experiment . 102 7.1.3 Medium composition TUB00-experiment . 103 7.1.4 Mutations found in MT18 by NGS . 104 7.2 Amino acid analysis via GC-MS . 105 7.2.1 GC-MS spectra of derivatized Trp . 105 7.2.2 Chromatogram of hydrolyzed and derivatized E. coli proteome . 106 7.3 Proteomics . 108 7.3.1 Regulators . 109 7.3.1.1 Effect of [3,2]Tp in TUB00 . 109 7.3.1.2 Evolvates TUB10 and TUB13 . 116 7.4 SDS-PAGE of expressed proteins . 123 Bibliography 125 Summary The presented study set out to change the amino acid set of the genetic code in two different Trp-auxotrophic E. coli strains with the help of the serial transfer regime under constant evolutionary pressure. By increasing the stringency of the system as the source for the canonical amino acid is depleted, the bacteria were forced to incorporate the Trp- surrogate [3,2]Tpa at all Trp-positions in the proteome. Both evolvates of the ancestral strains MT0 and TUB00 are capable of surviving the Trp → [3,2]Tpa replacement, but still show a preference for their canonical substrate. At regular time points, a representative sample of the population was frozen and made available for later analysis of the trajectory of the evolution. MS/MS and amino acid analysis via GC-MS were conducted and proved the successful exchange of all Trp by [3,2]Tpa. While the strain configuration of MT0 hampered a comprehensive analysis of the evolu- tionary trajectory, recent advances in genome sequencing (next generation sequencing) delivered information about the genetic changes of the evolved derivatives of the TUB cell line. To get a complete picture of the cellular response to the exchange of Trp, proteomic data were collected and analyzed. It turned out that the addition of the translationally active Trp-analog [3,2]Tpa caused a state of elevated stress response, most likely due to the production of a destabilized proteome. This hampers the growth of the ancestral strain in the presence of [3,2]Tpa. During the cultivation in the serial transfer regime, the strain adapts in a way to rearrange its expression profile to an unstressed ground state. The proteomic results are validated and allegeable by a key mutation in σS found by whole genome sequencing. This study presents the first analytically unambiguous exchange of a canonical amino acid by a synthetic analog throughout the whole proteome. All UGG-positions are Trp decoded by [3,2]Tpa-tRNACCA and result in a functional proteome. Additionally, the study presents an adaptation mechanism based on a shutdown stress response system and shows insights into proteome-wide replacements of canonical amino acids. I Zusammenfassung Die vorliegende Arbeit befasste sich mit der Veränderung des Aminosäurerepertoires des genetischen Codes innerhalb zwei verschiedener Trp-auxotropher E. coli Stämme mit Hilfe einer seriellen Übertragungsstrategie unter ständigem evolutionären Druck. Durch Erhöhung der Stringenz des Systems durch Entziehung der kanonischen Aminosäure wurden die Stämme gezwungen, das Trp-Analog [3,2]Tpa an allen Trp-Positionen im Proteom einzubauen. Beide Evolvate der Ausgangstämme MT0 und TUB00 können den Trp → [3,2]Tpa Austausch überleben, zeigen jedoch immer noch Präferenz für das kanonische Substrat. In regelmäßigen Abständen des Experiments, wurde ein repräsenta- tiver Teil der Population für eine spätere Analyse des evolutionären Verlaufs aufbewahrt. MS/MS und GC-MS Experimente wurden durchgeführt, um die erfolgreiche Substitu- tion aller Trp durch [3,2]Tpa zu beweisen. Während die Stammkonfiguration des MT0 eine nähere Analyse des Verlaufs der Adaptation behinderte, offenbarten Genomse- quenzierungen von Isolaten aus der TUB Population die genetischen Veränderungen, die für die Anpassung an das synthetische Medium verantwortlich sind. Um ein voll- ständiges Bild der zellulären Antwort auf den Austausch von Trp durch die synthetische Aminosäure zu erhalten, wurde das Expressionsprofil des Ausgangstammes und der Evolvate mittels SILAC untersucht. Es stellte sich heraus, dass das translational-aktive Trp-Analog [3,2]Tpa eine erhöhte Stressantwort, vermutlich aufgrund eines destabil- isierten Proteoms, hervorruft. Dies verhindert das Wachstum des Mutterstammes in Anwesenheit von [3,2]Tpa. Im Verlauf des Langzeitkultivierungs-Experiments, adaptiert sich der Stamm, indem er sein Expressionsprofil auch in Anwesenheit von [3,2]Tpa auf den relaxierten Grundzustand anpasst. Diese Proteomdaten können von einer mittels Genomsequenzierung gefunden Mutation in σS erklärt werden. Diese Studie zeigt den ersten analytisch fundierten, proteomweiten Austausch einer kanonischen Aminosäure durch ein synthetisches Analog. Alle UGG-Positionen werden Trp mit einer [3,2]Tpa-tRNACCA gelesen. Des Weiteren wurde ein Adaptationsmechanismus gefunden, der auf einem Ausschalten der Stressantwort des Bakteriums beruht. Hiermit wurden neue Einblicke in den Proteom-weiten Austausch von Aminosäuren erhalten. III Abbreviations A adenine Amp ampicillin ATP adenosine triphosphate aa amino acid aaRS amino acyl tRNA-synthetase cgOAHSS O-acetylhomoserine sulfhydrylase 2aza-Trp 2-aza-L-tryptophan 7aza-Trp 7-aza-L-tryptophan Aha azidohomoalanine pAzF p-azido-L-phenylalanine B.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages170 Page
-
File Size-