Diffusion Creep

Diffusion Creep

Diffusion Creep Poirier, Chapter 2 and 7, 1985. Gordon, 1985. Monday, Nov. 3, 2003 12.524 Mechanical properties of rocks Fick’s First Law: Driving Force ∇c z Chemical Diffusion ∇T z Thermal diffusion JD=−i ∇µ ∇V z Electrical conduction σ z Diffusion creep 12.524 Mechanical properties of rocks Types of Diffusion Mechanism Path Process Isotope Lattice Interdiffusion Self-diffusion Pipe Creep Vacancy Grain Boundary Ambipolar Interstitial Surface Ring Pore fluid 12.524 Mechanical properties of rocks Diffusion mechanisms Vacancy Diffusion Interstitial Ring Diffusion Collinear Direct Exchange Non -collinear Cyclic Exchange A B 12.524 Mechanical properties of rocks Vacancy–Assisted Diffusion From Site by Glicksman and Lupulescu, RPI, 2003 The FCC lattice geometry requires W = ( 3−1)Da = 0.73Da Images removed due to copyright considerations. For more information, see http://www.rpi.edu/~glickm/diffusion/ 12.524 Mechanical properties of rocks plan view Kinetics Equation for Vacancy Diffusion z Coefficient of Diffusivity for Self-diffusion not the same as Coefficient for Vacancy Diffusion DNDsd= vi v migration =−Nvoexp (∆∆ G vf / kT )i D v o exp − ( G vm / kT ) =−+DGGkTsd oexp (∆∆ vf vm )/ 12.524 Mechanical properties of rocks Diffusion Creep in Monatomic Solid z Basic Ideas Vacancies Supersaturated z Supersaturation of vacancies owing to stress z Diffusion results z Work done on mat’l Vacancies UndersaturatedVacancies by tractions z Energy dissipated in heat, entropy, and surface area 12.524 Mechanical properties of rocks Diffusion Creep z z Nabarro-Herring Creep Monatomic Lattice z Quasi static z Coble Creep z Vacancy Grain Boundary z Increasing length; Poisoining 12.524 Mechanical properties of rocks Critical Idea: Tension makes vacancy formation easier. z Tension=supersaturation ∆=∆−ΩGGσσ0 ffvv( ) ( ) ∆G 0 fv () Atom CC=−iexp vo kT ∆G 0 −Ωσ l fv () d CCv ()σ =−exp kT 12.524 Mechanical properties of rocks Gradient in Composition z Path Length: z Boundary: 2xd/4 z Lattice: (π/2)x(d/4) z Concentration Difference ∆G −Ωσ C exp− (fv ) o kT ∆+ΩG σ −−C exp (fv ) o kT ∆G fv σσΩ −Ω Co exp−− ( ) exp( ) exp( ) kT kT kT ∆G σΩ ∆=CC2exp( − fv )i o kT kT z Quasi-static Approx. 12.524 Mechanical properties of rocks Fick’s 1st Law ∆C J path=−Di path .) ∆L path Total flux =ΣFlux on each Path: d Φ=⋅⋅+⋅⋅JlJlδ δ d/2 vac flux L2 B Φ 2δ J total ave..)flux==+vac flux J J ii totaldl/2⋅ L d B Plugging ∆C and ∆L into i.) and inserting fluxes in ii.): ∆G fv σΩ 2exp(Co − )i ∆G fv σδΩ 12 kT kT JDC=−2exp( − ) ⋅ +() − D total L okT kTπ d82 d b d 12.524 Mechanical properties of rocks Total Flux on Both Paths z 82∆GGvfσδΩ 2DCBvo∆ vf σΩ JDCTotal=−+ L vo exp exp − 2 π dktkTddktkT G 16 ∆ vf σπδΩ DB =−DCLvoexp 1 + π dktkTdD2 L 12.524 Mechanical properties of rocks Converting flux to strain b z Each vacancy that travels through b the channel adds layer of depth b 1 2 ∆lvacsb# b2J Ω ==⋅⋅⋅=2 Jb2 total lt⋅ s dtotal d d ε12 z 32 σπδΩ DB ε22 ε11 ε =+2 DL 1 π dkT2 dDV 12.524 Mechanical properties of rocks Summary: N-H and Coble Creep z Diffusion Creep Constitutive Law: 32 σπδΩ D B ε =+2 DL 1 π dkT2 dDV z DDCL = VM V z Strain rate linear in stress z ε ∝ 1 d 2,3 z Other geometries change initial constant 12.524 Mechanical properties of rocks.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us