Particle Physics Astrophysics

Particle Physics Astrophysics

KB, J. Kumar, L. Strigari, M.-Y. Wang (2017) Sommerfeld-Enhanced J-Factors for Dwarf Spheroidal Galaxies Kimberly Boddy, University of Hawaii TeVPA 2017, Columbus, OH 9 August 2017 OVERVIEW OF INDIRECT DETECTION ➤ Search for DM by detecting annihilation/decay into SM particles (e.g., photons) ➤ Focus on DM annihilation in dwarf spheroidal galaxies (DM-dominated, good S/N) ➤ Differential flux d2Φ 1 σv dN = (⌦) h relif f dE d⌦ J 4⇡ 2m2 dE Xf OVERVIEW OF INDIRECT DETECTION ➤ Search for DM by detecting annihilation/decay into SM particles (e.g., photons) ➤ Focus on DM annihilation in dwarf spheroidal galaxies (DM-dominated, good S/N) ➤ Differential flux Particle Physics (⌦)= ⇢2 (r) d2Φ 1 σv dN J DM = (⌦) h relif f Zlos dE d⌦ J 4⇡ 2m2 dE f J = (⌦) d⌦ Astrophysics X J Z⌦ ➤ Separate astrophysics from particle physics J-FACTORS FOR DWARF SPHEROIDAL GALAXIES Fermi LAT, PRL 115, 231301 (2015) DES, ApJ 808, 95 (2015) 2 -5 log10[ J / (GeV cm )] ➤ Ursa Minor 18.8 ➤ Draco 18.8 ➤ Reticulum II 18.9 ➤ Coma Berenices 19.0 ➤ Segue 1 19.6 4 ⌦ =2.4 10− ⇥ J-FACTORS FOR DWARF SPHEROIDAL GALAXIES Fermi LAT, PRL 115, 231301 (2015) DES, ApJ 808, 95 (2015) 2 -5 log10[ J / (GeV cm )] ➤ Ursa Minor 18.8 ➤ Draco 18.8 ➤ Reticulum II 18.9 Potential signal‽ Geringer-Sameth et al., PRL 115, 081101 (2015) ➤ Coma Berenices 19.0 ➤ Segue 1 19.6 4 ⌦ =2.4 10− ⇥ J-FACTORS FOR DWARF SPHEROIDAL GALAXIES Fermi LAT, PRL 115, 231301 (2015) DES, ApJ 808, 95 (2015) 2 -5 log10[ J / (GeV cm )] ➤ Ursa Minor 18.8 ➤ Draco 18.8 ➤ Reticulum II 18.9 Potential signal‽ Geringer-Sameth et al., PRL 115, 081101 (2015) ➤ Coma Berenices 19.0 ➤ Segue 1 19.6 Why not here? Hold that thought. 4 ⌦ =2.4 10− ⇥ A CLOSER LOOK d2Φ 1 σv dN = (⌦) h relif f dE d⌦ J 4⇡ 2m2 dE f ➤ Velocity-averaged annihilation crossX section σv = d3v f(v ) d3v f(v )σ ~v ~v h reli 1 1 2 2 | 1 − 2| ➤ Trivial integral forZ s-wave, no velocityZ dependence ➞ proceed as usual A CLOSER LOOK d2Φ 1 σv dN = (⌦) h relif f dE d⌦ J 4⇡ 2m2 dE f ➤ Velocity-averaged annihilation crossX section σv = d3v f(v ) d3v f(v )σ ~v ~v h reli 1 1 2 2 | 1 − 2| ➤ Trivial integral forZ s-wave, no velocityZ dependence ➞ proceed as usual ➤ If there is velocity dependence, factorization of astrophysics and particle physics does not hold! ➤ DM velocity is dependent on location within the halo — relate to DM density profile ➤ (This is not specific to dSphs or Sommerfeld enhancement) PROPERLY INCORPORATE DM VELOCITY DISTRIBUTION v2 ➤ ✏ = + (r) Eddington formula for isotropic distribution 2 1 0 d2⇢ d f(✏)= DM p8⇡2 d 2 p✏ Z✏ − ➤ Assume NFW profile ⇢s ⇢NFW(r)= 2 r 1+ r Depends on !s and rs rs rs (or equivalently, Vmax and rmax) ➤ DM density ⇣ ⌘⇣ ⌘ vesc 2 ⇢DM(r)=4⇡ dv v f(r, v) Z0 DETERMINE NFW PROFILE PARAMETERS ➤ Constrain using average LOS stellar velocity distribution ➤ Assume Plummer profile ➤ Obtain stellar velocity distribution from Eddington formula ➤ Match average velocity dispersion to observed value ➤ Constrain using (Vmax,rmax) relation from Aquarius simulation Reticulum II Coma Berenices Segue 1 2.0 3.0 3.0 16.8 17.2 16.4 16.4 17.6 16.8 18.0 16.0 16.4 2.5 2.5 17.6 17.2 18.4 18.0 18.4 17.2 16.8 17.6 18.8 1.5 18.8 18.0 18.4 2.0 2.0 19.2 [kpc] 18.8 [kpc] [kpc] 19.6 1.0 1.5 19.2 1.5 19.2 20.0 max max max r r r 1.0 19.6 1.0 20.4 0.5 20.8 20.0 0.5 19.6 0.5 10 20 5 10 15 20 25 10 20 30 Vmax[km/s] Vmax[km/s] Vmax[km/s] Draco Ursa Minor 3.0 3.0 2.5 2.5 17.2 17.6 17.3 18.0 17.7 18.1 2.0 18.4 2.0 18.5 [kpc] 1.5 [kpc] 1.5 18.9 18.8 max max r 1.0 19.2 r 1.0 19.3 0.5 0.5 19.6 10 20 30 10 20 30 Vmax[km/s] Vmax[km/s] From Aquarius From stellar velocity SOMMERFELD ENHANCEMENT ➤ Yukawa potential 2 S 7 ↵X m r 10− 10 V (r)= e− φ − r 106 ➤ 3 Long-range force causes 10− distortion in incoming 105 4 10− wave function, particularly 104 2 / rel at low relative velocities v 103 5 10− vrel σvrel =(σvrel)0 S ⇥ 2 102 6 ⇣ ⌘ 10− ➤ Annihilation cross section 101 enhanced by S=|ψ(0)|2 100 6 5 4 3 2 1 10− 10− 10− 10− 10− 10− ➤ Rearrange: mφ/mX 2 d Φ 1 (σvrel)0,f dNf =[...] 2 2 dE d⌦ ⇥ 4⇡ 2m dE ↵X =10− Xf SOMMERFELD-ENHANCED J-FACTORS J = d3v f(r(l, ⌦),~v ) d3v f(r(l, ⌦),~v )S( ~v ~v /2) S 1 1 ⇥ 2 2 | 1 − 2| Z⌦ Zlos Z Z Reticulum II Coma Berenices Segue 1 1024 1023 ] 5 1022 cm / 2 1021 [GeV 1020 S J 1019 1018 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 10− 10− 10− 10− 10− 10− 10 10− 10− 10− 10− 10− 10− 10 10− 10− 10− 10− 10− 10− 10 mφ/mX mφ/mX mφ/mX Draco Ursa Minor 1024 1023 ] 5 1022 cm / 2 1021 [GeV 1020 S J 1019 1018 6 5 4 3 2 1 0 6 5 4 3 2 1 0 2 10− 10− 10− 10− 10− 10− 10 10− 10− 10− 10− 10− 10− 10 ↵X =10− mφ/mX mφ/mX ORDER FLIP EXAMPLE #1 1024 1023 1022 ] 5 cm / 2 1021 [GeV S J 1020 Reticulum II 1019 Coma Berenices Segue 1 Draco Ursa Minor 1018 6 5 4 3 2 1 0 10− 10− 10− 10− 10− 10− 10 mφ/mX 2 ↵X =10− ORDER FLIP EXAMPLE #2 1024 1023 1022 ] 5 cm / 2 1021 [GeV S J 1020 Reticulum II 1019 Coma Berenices Segue 1 Draco Ursa Minor 1018 6 5 4 3 2 1 0 10− 10− 10− 10− 10− 10− 10 mφ/mX 2 ↵X =10− SUMMARY ➤ Large variations in J-factors due to: ➤ Astrophysics: Form of density profile (and velocity distribution) ➤ Particle physics: Velocity dependence of annihilation cross section ➤ Proper velocity averaging may significantly impact limits (or derived quantities from a future detection) on particular models ➤ Ordering of dwarf spheroidal JS-factors is different in s-wave limit vs. Coulomb limit for Sommerfeld enhancement ➤ Beware naive consistency check: Possible signal could still have a DM interpretation, even if no signal is observed in another system with larger “s-wave” J-factor.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us