Voltammetric Sensors for the Determination of Biomolecules/Doping Agents

Voltammetric Sensors for the Determination of Biomolecules/Doping Agents

VOLTAMMETRIC SENSORS FOR THE DETERMINATION OF BIOMOLECULES/DOPING AGENTS A THESIS Submitted in partial fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY by SUNITA BISHNOI G~NTRAL Lle,~ C 2 I Sc3. 4• ACC No ................. .p çi 4 DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247 667 (INDIA) MAY, 2011 Of INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE CANDIDATE'S DECLARATION I hereby certify that the work which is being presented in the thesis entitled, "VOLTAMMETRIC SENSORS FOR THE DETERMINATION OF BIOMOLECULES/DOPING AGENTS" in partial fulfilment of the requirements for the award of the Degree of Doctor of Philosophy and submitted in the Department of Chemistry of the Indian Institute of Technology Roorkee, Roorkee is an authentic record of my own work carried out during a period from July, 2007 to May, 2011 under the supervision of Dr. R.N. Goyal, Professor, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee. The matter presented in the thesis has not been submitted by me for the award of any other degree of this or any other Institute. (SUNITA BISHNOI) This is to certify that the above statement made by the candidate is correct to the best of my knowledge. (R.N. Goyal) Supervisor Date: The Ph.D. Viva-Voce Examination of Ms. Sunita Bishnoi, Research Scholar, has been held on ....Z.a:..il :. (I................. Signature of Su sor Signature of External Examiner ct)W— 1 ABSTRACT The need of highly sensitive and selective sensing probes having enormous practical applications and significant benefits over conventional technologies attracted researchers towards nanomaterials based technologies. Last few years have seen a worldwide outburst of research interest of electrochemists at the interface of nanotechnology and electrochemistry. The implementation of nanoscience and nanotechnology achievements in bioelectrochemistry ameliorates the current electroanalytical techniques and methodologies by improving sensitivity and selectivity along with detection limit. Application of carbon nanomaterials in sensor research offers excellent prospects for designing novel sensing systems and enhancing the performance of bioanalytical assay. The fabrication of electrode surface with nanomaterials imparts functionality distinct from the base electrode and has been found to show consistently good results with high sensitivity and selectivity. In view of the large number of biomolecules in human body and the ability of nanomaterial modified electrodes to measure extremely small amounts of specific biomarkers at molecular levels, an endeavour, has been made in the present investigation to develop simple and sensitive electroanalytical methods using nanomaterial based sensors for the qualitative and quantitative analysis of biologically important compounds, drugs and doping agents. The first chapter of the thesis is "General Introduction" giving a recapitulate review of the relevant work and, highlights the significance of electrochemical studies in biological systems along with its relevance in assorted areas. The brief account of various electroanalytical techniques employed for present dissertation has also been described. The• chapter also discusses the concise outline of advantages rendered by nanomaterial modified electrodes over conventional electrodes. The second chapter of the thesis describes the simultaneous determination of relative concentrations of guanine and 8-hydroxyguanine in oxidatively damaged calf thymus DNA sample. Guanine is highly susceptible to oxidative stress in the genomic DNA due to having the lowest oxidation potential hence; guanine plays a key role in the oxidation of DNA by various types of oxidants and free radicals. 8-Hydroxyguanine is one of the prominent lesions generated during DNA damage by oxidative processes and most extensively investigated due to its miscoding properties and potential role in mutagenesis, iii carcinogenesis and aging. A quantitatively important alteration occurring during oxidative damage to DNA consists of oxidation of guanine residues into 8-hydroxyguanine. The bare and single walled carbon nanotubes modified edge plane pyrolytic graphite electrodes are utilized to examine such type of vital alteration. It has been found that remarkable enhancement in the oxidation peak current of both compounds was observed along with the negative shift of peak potentials using modified electrode as compared to bare electrode. Oxidative damage to DNA bases by isotope dilution mass spectrometry required isotopically labelled oxidized bases as internal standards and GC-MS requires a derivatization procedure which can cause `artifactual' oxidation of some undamaged bases leading to an overestimation of their oxidation products, including 8-hydroxyguanine. Therefore, using proposed method which requires no internal standards and derivatization steps and, hence, eliminates possible `artifactual' oxidation of DNA bases; the level of guanine and 8-hydroxyguanine can be measured in calf thymus DNA with high rank of accuracy. 0 0 H N N H2 N "'N N H H2N N Guanine 8-Hydroxyguanine The third chapter of the thesis presents the novel approach using square wave voltammetry with the combination of multi-walled carbon nanotubes modified edge plane pyrolytic graphite electrode (MWNT/EPPGE) as a sensitive and selective sensor for the detection of catecholamines — epinephrine (EP) and norepinephrine (NE) in human body fluids. The chapter is divided into two sections -- first section deals with the determination of epinephrine while the second section describes the simultaneous determination of epinephrine and norepinephrine. Catecholamines are produced by sympathetic nervous system activation and act as hormones and neurotransmitter to monitor heart rate, brain muscles activity, glycogenolysis, fatty acid mobilization and body temperature. These important actions also make them potent doping agents and hence, epinephrine is banned in competitive games by World Anti. Doping Agency. Studies show that changes of their iv concentration in nervous tissues and body fluids are diagnostic symptoms of several diseases. The amount of catecholamines present in blood, plasma or serum is considered as a diagnostic aid to monitor therapeutic administration or to identify the causative agent in potential poisoning victims. Hence, the quantitative determination of catecholamines is quite helpful for developing nerve physiology, clinical diagnosis of some diseases and controlling medicine in pharmacological research. The release of catecholamines in human system also depends on smoking and exercise because these stimulants activates the sympathetic nervous system acting via splanchnic nerves to the adrenal medulla and thus stimulates the release of catecholamines into the blood stream. Therefore, blood plasma and urine samples of smokers ' and athletes were analyzed to determine catecholamines — epinephrine and norepinephrine concentrations. A broad bump at — 250 mV is appeared for the oxidation of epinephrine and norepinephrine at bare EPPGE whereas at MWNT/EPPGE two well-separated peaks at —150 and —215 mV are appeared for the oxidation of EP and NE, respectively. The oxidation peak current of both the neurotransmitters increased significantly along with the negative shift of peak potentials using MWNT/EPPGE. The oxidation of both the compounds occurred in a pH dependent, 2e and 2H+ process and the electrode reaction followed diffusion controlled pathway. Linear calibration curves were obtained for epinephrine and norepinephrine in the range 0.5 — 100 nM with limit of detections 0.15 x 109 and 0.90 x 10-10 M, respectively. The fourth chapter of the thesis deals with the comparative study of the electrocatalytic activity of two types of CNTs — single walled carbon nanotubes (SWNTs) and multi walled carbon nanotubes (MWNTs) towards electrochemical determinations. A detailed comparison has been made between the response of S WNT and MWNT modified edge plane pyrolytic graphite electrode in terms of several important analytical parameters viz, sensitivity, selectivity and detection limit in order to understand that which one have enhanced electrocatalytic activity. The chapter also discussed the effect of surfactant — cetyltrimethyl ammonium bromide as electrode surface modifier along with single walled carbon nanotubes. The chapter is divided into three sections — first section deals with the voltammetric determination of a new potent calcium antagonist, amlodipine besylate (ADB), in human body fluids mainly focused on the comparison of electrocatalytic activity of MWNTs and SWNTs towards the oxidation of ADB. The second section describes the v simultaneous determination of two important synthetic corticosteroids — prednisolone and prednisone in human body fluids and pharmaceutical preparations at single walled carbon nanotubes modified edge plane pyrolytic graphite electrode (SWNT/EPPGE). The urine and plasma samples of patient undergoing treatment with prednisolone were analyzed so that the method can be used to determine prednisolone and prednisone in doping cases and other clinical purposes. The third section discusses the use of single .walled carbon nanotubes- cetyltrimethylammonium bromide nanocomposite film modified edge plane pyrolytic graphite electrode (S WNTs-CTAB/EPPGE) for the determination of betamethasone, a potent pharmaceutical ingredient and doping agent, in urine samples of pregnant women who are undergoing treatment with

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    216 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us