Oil and gas shales of Northern Germany: Implications from organic geochemical analyses, petrophysical measurements and 3D numerical basin modelling Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch -Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von M.Sc. Daniel Mohnhoff aus Linnich Berichter: Univ.-Prof. Dr. rer. nat. Ralf Littke Prof. Dr. Brian Horsfield Tag der mündlichen Prüfung: 07. Dezember 2015 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar Acknowledgments I Acknowledgments First of all, I like to express my gratitude to Prof. Dr. Ralf Littke for giving me the opportunity to pursue a PhD in Petroleum Geoscience at the Institute of Geology and Geochemistry of Petroleum and Coal at RWTH Aachen University. I like to thank him for the valuable input, careful supervision and outstanding support he provided during the course of my studies. Furthermore, I thank Prof. Dr. Brian Horsfield, GFZ, for his work as reviewer of this thesis. I sincerely thank Dr. Bernhard M. Krooss, Dr. Amin Ghanizadeh and Reinhard Fink for introducing me to the petrophysical analytical procedures utilized in this thesis. Their constant support and the resulting fruitful discussions are much appreciated and deepened my understanding of petrophysics significantly. A special gratitude goes to Dr. Benjamin Bruns and Dr. Victoria Sachse for their continuous and tireless support regarding the building of a 3D high resolution basin model. In this context, I thank Schlumberger for providing an academic license of the PetroMod software. I sincerely like to acknowledge and thank my friends, fellows and colleagues at the Institute of Geology and Geochemistry of Petroleum and Coal who accompanied me over the last years and provided an outstanding work environment. My deepest regards go to my wife Charlotte, who constantly and relentlessly supported and encouraged me during the creation of this thesis. Dedicated to my family. Abstract II Abstract Based on an increasing demand the recent development of the world energy led to a shift of interest towards the assessment and, partially, exploitation of unconventional petroleum resources, especially in the U.S. Strong advances in well completion technologies such as artificial reservoir stimulation (hydraulic fracturing) and multi-lateral wells enabled the utilization of these previously inoperable assets. Following these initial successes in exploration and production of shale gas in particular, unconventional reservoirs became a prominent target for scientific and commercial investigations worldwide. Exploration and evaluation of shale gas systems, and unconventional hydrocarbon reservoirs in general, are being performed in Europe to potentially increase the domestic hydrocarbon production. In Germany, the main focus lies on organic-rich shale formations that are known to have sourced conventional oil- and gas fields. In this context, the main source rocks investigated are the Mississippian Upper Alum Shale, the Toarcian Posidonia Shale and the Berriasian Wealden shales. Production history and -experience of shale gas in the U.S. showed that a multitude of factors influence the suitability and production performance of low permeable rocks. These factors include (organic) geochemical, mineralogical, petrophysical and reservoir characteristic properties. The organic geochemical component defines the quality and quantity of hydrocarbons generated from these rocks and has a strong influence on the adsorption of gas molecules on particulate organic matter (kerogen). Typical organic geochemical parameters include the kerogen type, total organic carbon (TOC) content and the hydrogen index (HI), which define the quality of a source rock. Petrophysical properties represent critical parameters for the potential storage capacity in intergranular spaces (porosity) of rocks as well as production related factors (permeability). Information on the mineralogical composition allows an estimate of susceptibility to artificial stimulation techniques, while reservoir scaled characteristics provide information on both hydrocarbon generation and storage variability (burial/uplift history, compaction, thermal maturity, facies variation etc.). A multitude of different analytical procedures was performed to gain information on many of these aspects for the Wealden shales and the Posidonia Shale. The main focus was set hereby on the organic geochemical and –petrological inventory of the Wealden shales and the influence of hydrocarbon generation and expulsion/retention on the petrophysical parameters of organic-rich shales using the example of the Posidonia Shale. Based on these findings, a high resolution 3D numerical basin model was established to estimate the amount of adsorbed and free gas in these formations throughout the central Lower Saxony Basin, representing a much more detailed approach than those of previously published studies. The sample suite investigated from three wells from the central area of the Lower Saxony Basin represent a thermal maturity series of the Berriasian Wealden shales ranging from immature/early mature samples from one well to overmature shales in two additional wells. Data Kurzfassung III from vitrinite reflectance measurements are hereby supported by several biomarker ratios. The analyzed samples revealed four intervals which can be described as excellent source rocks of lacustrine origin, comprising type I kerogen, based on organic geochemical and –petrographical analyses. Effects of oil generation and migration is evident from petrographical analyses of the overmature sample sets. Alginite present in the early mature samples, including botryococcus algae of brackish to lacustrine origin, is replaced by an extensive solid bitumen network in the overmature counterparts. Strong small scale heterogeneities of depositional environment are expressed in the variability of source related biomarker inventories throughout the Wealden succession. Pore space evolution in dependence of thermal maturation was studied using a novel flow- through extraction procedure on core samples of the Posidonia Shale from the Hils Syncline, Germany. The subsequent removal of soluble organic matter resulted in a significant increase of porosity and permeability in all investigated samples. Open fractures were generated by this procedure which are predominantly oriented parallel to the bedding of the rocks as determined via organic petrography. Residues of hydrocarbons precipitated from the solvent indicate a flow direction of DCM along these fractures. Analyses of the gained extracts revealed substantially different hydrocarbon compositions at different time steps during the extraction runs. Results from a high resolution 3D numerical basin model of the central Lower Saxony Basin show that adsorbed depends mainly on the source rock quality and burial history of the investigated Posidonia Shale and Wealden shale horizons. The amount of free gas in the pore system is strongly influenced by the sealing capacity of overlying strata. Kurzfassung IV Kurzfassung Die weltweit steigende Nachfrage nach fossilen Energieträgern führte in den letzten Jahren zu einer Erweiterung der Explorations- und Produktionsaktivitäten von konventionell geförderten Kohlenwasserstoffen hin zu unkonventionellen Ressourcen. Vor allem in den USA wurden durch Weiterentwicklungen von Bohrlochkomplettierungsmethoden und künstlicher Reservoirstimulationstechniken (Hydraulic Fracturing) vormals inoperable Reservoire erschlossen. Im Anschluss an diese ersten Erfolge in der Exploration und Produktion von Schiefergas entwickelten sich unkonventionelle Reservoire zu wichtigen Zielen für wissenschaftliche und kommerzielle Untersuchungen weltweit. Exploration und Evaluierung von Schiefergassystemen, und unkonventionellen Kohlenwasserstoffvorkommen im allgemeinen, werden derzeit in Europa intensiviert, um die inländische Produktion von Kohlenwasserstoffen zu erhöhen. In Deutschland liegt der Schwerpunkt der Forschungsaktivitäten auf organik-reichen Schieferformationen, die zuvor konventionelle Öl- und Gasfelder gespeist haben. In diesem Zusammenhang liegt der Fokus der derzeitigen Forschungen auf dem Hangenden Alaunschiefer (Mississippium), dem Posidonienschiefer (Toarcium) und den Wealden-Schiefern (Berriasium). Produktionsdaten von Schiefergasreservoiren aus den USA haben gezeigt, dass eine Vielzahl von Faktoren die Eignung solcher niedrig-permeablen Gesteine zur Kohlenwasserstoffförderung beeinflusst. Diese Faktoren umfassen (organisch-) geochemische, mineralogische, petrophysikalische und Reservoir-charakteristische Eigenschaften. Die organisch-geochemische Komponente definiert die Qualität und Quantität von Kohlenwasserstoffen, die von diesen Gesteinen erzeugt werden können, und hat einen starken Einfluss auf die Adsorption von Gasmolekülen auf partikulärer organischer Substanz (Kerogen). Zu den typischen organisch- geochemischen Parametern gehören der Kerogen-Typ, der organische Kohlenstoffgehalt (TOC) und der Wasserstoffindex (HI). Diese Parameter definieren die Qualität eines Muttergesteins. Petrophysikalische Eigenschaften umfassen kritische Parameter für die mögliche Speicherkapazität in interkristallinen Hohlräumen (Porosität) von Gesteinen sowie produktionsbezogene Faktoren (Permeabilität). Informationen über die mineralogische Zusammensetzung ermöglichen eine Abschätzung zur Durchführbarkeit
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages154 Page
-
File Size-