Computer Science and Systems Analysis Computer Science and Systems Analysis Technical Reports Miami University Year Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles Onur Dulgeroglu Miami University, [email protected] This paper is posted at Scholarly Commons at Miami University. http://sc.lib.muohio.edu/csa techreports/32 DEPARTMENT OF COMPUTER SCIENCE & SYSTEMS ANALYSIS TECHNICAL REPORT: MU-SEAS-CSA-1994-001 Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles Onur Dulgeroglu School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928 Intelligent Simulation Modeling of A Flexible Manufacturing System With Automated Guided Vehicles Onur Dulgeroglu Systems Analysis Department Miami University Oxford, Ohio 45056 Working Paper #94-001 May, 1994 SYSTEMS ANALYSIS DEPARTMENT MASTER'S PROJECT FINAL REPORT Presented in Partial Fulfillment of the Requirements for the Degree of Master of Systems Analysis in the Graduate School of Miami University TITLE: Intelliaent Simulation Modelina of a Flexible Manufacturins Svstem with Automated Guided Vehicles PRESENTED BY: onur Dulaeroalu DATE: April 21. 1994 COMMITTEE MEMBERS: Donald Byrkett James Kiper Mufit Ozden, Advisor Alton Sanders Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles Onur Dulgeroglu Department of Systems Analysis Miami University, 1994 Although simulation is a very flexible and cost effective problem solving technique, it has been traditionally limited to building models which are merely descriptive of the system under study. Relatively new approaches combine improvement heuristics and artificial intelligence with simulation to provide prescriptive power in simulation modeling. This study demonstrates the synergy obtained by bringing together the "learning automata theory" and simulation analysis. Intelligent objects are embedded in the simulation model of a Flexible Manufacturing System (FMS), in which Automated Guided Vehicles (AGVs) serve as the material handling system between four unique workcenters. The objective of the study is to find satisfactory AGV routing patterns along available paths to minimize the mean time spent by different kinds of parts in the system. System parameters such as different part routing and processing time requirements, arrivals distribution, number of palettes, available paths between workcenters, number and speed of AGVs can be defined by the user. The network of learning automata acts as the decision maker driving the simulation, and the FMS model acts as the training environment for the automata network; providing realistic, yet cost-effective and risk-free feedback. Object oriented design and implementation of the simulation model with a process oriented world view, graphical animation and visually interactive simulation (using GUI objects such as windows, menus, dialog boxes; mouse sensitive dynamic automaton trace charts and dynamic graphical statistical monitoring) are other issues dealt with in the study. Table of Contents: I . Introduction ......................................................................................................................................... 1 I .A . Traditional Simulation Modeling .................................................................................... 1 I.A.1. Advantages of Simulation Modeling over Analytical Approaches................. 1 I.A.2. Shortcomings of Simulation as a decision making tool ..................................... 1 I.B. "Intelligent"Simulation Modeling .................................................................................... 2 I.B.1. What others have done .......................................................................................... 2 I.C. The Learning Automaton .................................................................................................. 3 I1 . The Problem Area ............................................................................................................................... 4 1I.A. Flexible Manufacturing Systems (FMS) and Automated Material Handling ..........4 1I.B. An Overview of the FMS Under Consideration and Objectives of the Study .......... 5 II.B.l. Introduction ............................................................................................................ 5 II.B.2. Operation of the FMS under study ..................................................................... 5 General behavior: ............................................................................................... 5 AGV Routing. ...................................................................................................... 8 AII combinations considered: ...........................................................................10 Taking shortcuts is not always the best choice: .............................................. 10 Variable, dynamic production schedule: ........................................................ 10 II.B.3. Model Parameters .................................................................................................. 11 II.B.4. Statistical Analysis ................................................................................................ 14 111. Evolutionary Decision Making ....................................................................................................... 16 1II.A. Topology of the Learning Automata Network .......................................................... 16 1II.B. The Rewarding Scheme ................................................................................................. 19 III.B.l. the Reward Function ........................................................................................... 19 Flow Time. ........................................................................................................... 19 the Generic Part: .................................................................................................19 Exponential Smoothing: .................................................................................... 21 Calculating the Reward Function Value for a Batch:..................................... 21 III.B.2. Rewarding the Automata ................................................................................... 21 III.B.3. Implicitly Coordinated Convergence ............................................................... 23 I1I.C. Dynamic Monitoring and Interactive Modeling ........................................................ 23 IV . Implementation ................................................................................................................................ 26 1V.A. Classification of Choices ............................................................................................... 26 IV.A.l. Implementation Platform .................................................................................. 26 General Purpose Programing Languages: ......................................................26 Simulation Languages: ...................................................................................... 27 IV.A.2. Software Development Paradigm .................................................................... 27 Procedural Programming. .................................................................................27 Object Oriented Programming: ........................................................................ 28 IV.A.3. Simulation Modeling World View ................................................................... 29 Event Oriented: ...................................................................................................29 Process Oriented: ................................................................................................ 29 1V.B. Best Choices ..................................................................................................................... 30 IV.B.1. Practical Issues ..................................................................................................... 30 IV.B.2. the Best Combination.......................................................................................... 32 IV.B.3. Examples of the Reduced Semantic Gap .........................................................34 V. SAMPLE RUNS................................................................................................................................. .36 V.A. Run 1: Two Different Part Types ................................................................................... 37 V.B. Run 2: One Part Type ..................................................................................................... .48 VI. Conclusion and Future Directions ................................................................................................. 56 VII. References.. ....................................................................................................................................... .57 VIII. Appendices VII1.A. Extended Bibliography for Flexible Manufacturing Systems VII1.B. Extended Bibliography for Intelligent Simulation Modeling VII1.C. Source Code Listings: Definition Modules VII1.D. Excerpts from Implementation Code: Examples of the Reduced Semantic Gap I. INTRODUCTION I.A. Traditional Simulation Modeling I.A.1. Advantages of Simulation Modeling over Analytical Approaches Simulation is a powerful problem solving technique. It can be used to experiment with
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages155 Page
-
File Size-