Buchwald-Hartwig Chemistry

Buchwald-Hartwig Chemistry

Buchwald-Hartwig Chemistry Ian Mangion MacMillan Group Meeting July 30, 2002 ! Historical context ! Development of initial catalytic systems ! Mechanistic studies and rational design ! Reaction Scope Definition of Buchwald-Hartwig Chemistry MLn X + HNR2 NR2 R Base R MLn X + HOR OR R Base R EWG EWG X + MLn R EWG Base R EWG X = I, OTf, Br, Cl M = Pd, Ni, Cu ! Over 70 publications from Buchwald ! Over 50 publications from Hartwig ! Several comprehensive reviews Buchwald, S.; Muci, A. Top. Curr. Chem. 2002; 219 , 133-209 Hartwig, J. Pure Appl. Chem. 1999, 71, 1417 Buchwald, S; Yang, B. J. Orgmet. Chem. 1999, 576, 125 Hartwig, J.; ACIEE. 1998, 37, 2046 Hartwig, J . Acc. Chem. Res . 1998, 31, 852 Buchwald et al. Acc. Chem. Res. 1998, 31, 805 Aryl Aminations Before Buchwald-Hartwig ! Ullman discovers ipso-substitution of aryl halides mediated by copper in 1901 CuX X + HNR2 HNR2 Lindley, J. Tetrahedron, 1984, 40, 1433 ! Scope has been expanded to include a tremendous variety of nucleophiles ! Limited by harsh reaction conditions, stoichiometric metal ! Multiple mechanisms thought to be operating, catalytic species poorly defined ! Aryne chemistry allows for amination of an expanded scope of aryl halides R R R NaNH HNR2 X 2 NR2 Biehl, E. J. Org. Chem., 1987, 52, 2619 ! Functional group compatibility low ! Regiocontrol is a problem The Move Towards a General Reaction ! Bunnett introduces the S RN1 mechanism to the picture Me Me NH3, hv Me Br + Me N - N CH2 Me Me 87% yield Bunnett, J . Acc. Chem. Res. , 1978, 11, 413 ! Demanding couplings can be accomplished ! Reaction conditions are mildest yet ! All drawbacks associated with radical mechanisms are present ! Migita makes the major breakthrough PdCl2(o-tolyl3P)2 Br + Bu3SnNEt2 NEt2 PhCH3, reflux 81% yield Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett., 1983, 927 Kosugi, M.; Kameyama, M.; Sano, H.; Migita, T. Nippon Kagaku Kaishi , 1985, 3, 547 ! First example of a palladium-catalyzed aryl-amine coupling ! Aryl bromides are only viable aromatic substrates ! Reaction scope is very limited, but reactions are clean and mild ! Tin amides are toxic, sensitive compounds ! This work goes unreferenced for a decade Hartwig Takes a Closer Look ! The mechanism of Migita's reaction is studied for the first time PdCl2(o-tolyl3P)2 Me Br + Bu3SnNR2 Me NR2 PhCH3, 90-110˚C 75-85% yield ! Oxidative addition, reductive elimination suspected ! Hartwig probes for Pd(0) complexes and isolable intermediates Bu3SnNR2 (o-tolyl)2Pd NR L Ar Pd ArBr (o-tolyl)2Pd Br Br isolated, X-ray strucure given Pd Ar L L Ar Pd Bu3SnNR2 Br Br ArNR2 Pd Ar L >90% yield ! Palladium dimer implicated in catalytic cycle ! Dimer does not exchange Ar in crossover experiments ! In presence of tin amines, dimer is suspected to irreversibly dissociate to monomeric form Paul, F.; Patt, J.; Hartwig, J. J. Am. Chem. Soc. , 1994, 116, 5969 Proposed Catalytic Cycle L2Pd L2PdX2 reduction L-Pd ArNR2 ArBr L Ar NR2 Br Pd L Pd Pd L Br Br Ar Ar Pd Ar L BrSnBu3 R 2NSnBu3 ! Phosphine inhibition implies monophosphine Pd is active species ! Pd(0) sources can catalyze the reaction ! As in Stille couplings, tin transmetalation appears to be the rate-limiting step Paul, F.; Patt, J.; Hartwig, J. J. Am. Chem. Soc. , 1994, 116, 5969 Buchwald Enters the Field ! Three months after Hartwig's paper is submitted, Buchwald submits the following work, beginning an ongoing trend of indepent, overlapping research ! Buchwald expands the scope of the reaction by generating tin amines in situ Ar purge PdCl2(o-tolyl3P)2 Bu3SnNEt2 + HNRR' Bu3Sn-NRR' NRR' – HNEt2 PhCH3, reflux R Br R ! Use of tin reagents is still required, but a large variety of amines are made available through transmetalation ! Reaction still restricted to aryl bromides ! Only secondary amines and primary anilines can be used ! o-substituted aryls not reported ! Catalyst loadings of less than 2% are typical, most reactions run 24 h Ph Ph + PdCl2L2 EtO2C Br HN EtO2C N 88% yield Ph Ph + PdCl2L2 81% yield Me2N Br HN Me2N N Me Br + PdCl2L2 55% yield HN Me N Guram, A.; Buchwald, S. J. Am. Chem. Soc. , 1994, 116, 7901 Tin-Free Catalysis ! Once again in quick succession, Buchwald and Hartwig publish methods for tin-free aryl-amine couplings PdCl2(o-tolyl3P)2 or Pd(dba) + 2 (o-tolyl) P Br + 2 3 HNRR' NRR' R NaOtBu or LiHMDS R PhCH3, reflux ! A new catalytic cycle is proposed in which the base deprotonates Pd-amine complexes ! Pd(0) shown to be resting state of catalyst, so oxidative addition is now the rate-limiting step reduction L2PdX2 L2Pd ArNR2 L-Pd ArBr L Ar "#Hydride Elimination NR 2 Pd ArH L Pd Br Br Ar Pd Ar L HOtBu R N + NaBr Br L R' H Pd NaOtBu Ar NR2H HNR2 Guram, A.; Rennels, R.; Buchwald, S. ACIEE, 1995 , 34, 1348 Louie, J.; Hartwig, J. Tet. Lett. , 1995 , 3609 Expansion of Scope ! The new conditions allow for greater substrate scope Me Me Ph Ph PdL2 N 88% yield Br + HN NaOtBu Me Me Me Me O PdL2 Br + NHHex NHHex 72% yield NaOtBu Ph PdCl2L2 MeO Br + HN N 94% yield LiHMDS PdL2 + HNEt n-Bu NEt 40% yield n-Bu Br 2 2 (+ 40% reduced arene) LiHMDS L = (o-tolyl) 3P ! Primary amines can be coupled with electron-withdrawing aryl halides ! Cyclic secondary amines and alkyl anilines are good substrates ! Most acyclic secondary alkyl amines are problematic with electron-rich or neutral aryl halides Guram, A.; Rennels, R.; Buchwald, S. ACIEE, 1995 , 34, 1348 Louie, J.; Hartwig, J. Tet. Lett. , 1995 , 3609 Role of the Phosphines: Early Studies Ar +L ArNPh2 L3Pd ArNPh2 + L4Pd NPh2 + L4Pd +L +L –L L Ar Pd Ph2N L –L +L Ar +L LPd ArNPh2 NPh2 +L4Pd +L Ph2 Ar N Pd –L L L Ar Pd ArNPh2 L NPh2 +L4Pd ! Inverse first-order dependence on phosphines from the monomer suggests dissociative, three-coordinate complex is dominant in the catalytic cycle ! First-order dependence on synthetic monomer or dimer ! Rate of reaction for dimer is phosphine-independent. ! Mixture of dimers do not cross over, implying irreversible cleavage to three-coordinate palladium monomer. Driver, M.; Hartwig, J. J. Am. Chem. Soc. , 1995, 117, 4708 Paul, F.; Baranano, D.; Richards, S.; Hartwig, J. J. Am. Chem. Soc. , 1996, 118, 3626 Further Considerations in Reaction design Reductive Elimination R2N Bu3SnR2 Accelerated by: L Pd L Pd 1. Electron withdrawing aryl groups n n 2. Larger, more donating R Br NR2 m 3. Larger L "-Hydrogen Elimination H Bu SnN(CD ) 3 3 2 Me Me Me [(o-tolyl)3P]2Pd Me NR2 + Me D Me Br Me Me Me 50-70% deuteration depending on ligand Alternative hydrogen source unknown ! Most qualitative steric and electronic effects are consistent with analogous C-C bond formation reactions ! Perturbations that drive reductive elimination enhance the rate of amination over aryl hydrodehalogenation ! More nucleophlic amines are better substrates ! More than one mechanism competes to produce reduced arenes ! Pd(II) and Pd(0) sources are both competent, but small amounts of arene reduction attributed to Pd(II) reduction Paul, F.; Baranano, D.; Richards, S.; Hartwig, J. J. Am. Chem. Soc. , 1996, 118, 3626 Bidentate Ligands: A Dramatic Advance ! In back-to-back communications, Buchwald and Hartwig report vast improvements in scope and yield by use of bidentate phosphine ligands ! Catalyst loadings are typically 0.5-1.0 mol%, and reactions are typically faster Me Me Pd2(dba)3 H Br N 95% yield + n-HexNH2 BINAP, NaOtBu Hex PhCH3, 80˚C MeO 6 h MeO Me Me NMe Pd2(dba)3 Br N + HN NMe BINAP, NaOtBu 98% yield PhCH3, 80˚C 4 h Me Me OMe (DPPF)PdCl2 OMe I PhCH3, 100˚C NHPh + H2NPh NaOtBu 96% yield 3 h Me Br H (DPPF)PdCl2 N Me Me PhCH3, 100˚C 84% yield Ph + H2N Ph Me NaOtBu O 3 h O Wolfe, J.; Wagaw, S.; Buchwald, S. J. Am. Chem. Soc., 1996 , 118, 7215 Driver, M. ; Hartwig, J. J. Am. Chem. Soc. , 1996, 118, 7217 Bidentate Ligands: Mechanistic Revision ! Reductive elimination from four-coordinate complex now proposed L L ! Intermediate demonstrated by 31P NMR, and synthesis of isolable 4-coordinate arylamino Pd Ar NR palladium species 2 ! Enforced cis geometry of coupling partners thought to suppress "-hydrogen elimination: Hartwig argues "-hydrogen elimination possible only with empty coordination site on 14-electron complex cis to alkyl amine ! Followup mechanistic studies show rates of monodentate phosphine reactions are a competition between three- and four-coordinate complexes Ar k1 LPd ArNPh2 NPh2 +L4Pd DPPF intermediates synthesized +L –L +L k2 Ph2 P –L L Ar Ph k3 k-3 k Fe Pd -2 Pd ArNPh2 NR2 L NPh2 +L4Pd P Ph2 Ar R = tolyl, isoBu L2Pd NPh 2 Revised rate expression proposes These compunds give coupling products all shown intermediates to be involved when heated, in up to 90% yield for monodentate ligands Driver, M. ; Hartwig, J. J. Am. Chem. Soc. , 1997, 119, 8232 Wolfe, J.; Wagaw, S.; Buchwald, S. J. Am. Chem. Soc., 1996 , 118, 7215 Driver, M. ; Hartwig, J. J. Am. Chem. Soc. , 1996, 118, 7217 Aryl Iodides and Triflates: Challenging Substrates ! Buchwald proposes that monodentate phosphine ligands were ineffective with aryl iodides because they allowed more stable palladium iodide dimers to form. ! Experiments perturbing steric bulk of amine suggest steric difference between I and Br might be important as well L Ar L Ar van der Waals radii: Pd Pd Cl (1.75 Å) < Br (1.85 Å) < I (1.96 Å) Br Br more labile than I I Pd Pd -1 Ar L Ar L ""G298Kfor DIPA with Pd dimers = 4.6 kcal mol -1 ""G298Kfor BnNH2 with Pd dimers = 2.7 kcal mol (bulkier amines more sensitive to size of I) ! Pd-C and Pd-P rotation barriers found to be greater for larger halides ! Triflates are prone to cleavage to phenols by nucleophilic bases at a rate competitive to reductive elimination H OTf H2N N Pd2(dba)3/P(o-tolyl)3 + <5% yield NaOtBu, PhCH 3, reflux MeO MeO OTf Pd2(dba)3/P(o-tolyl)3 N + HN NaOtBu, PhCH 3, reflux <5% yield Me MeO Louie, J.; Driver, M.; Hamann, B.; Hartwig, J.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us