Game Theory. Program International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB) Jordi Massó 0 Choice under Uncertainty 0.1.- Choice under Certainty 0.2.- Basic Lotteries 0.3.- Composed Lotteries 0.4.- Preferences on Risky Alternatives 0.5.- Expected Utility Property 0.6.- Expected Utility Theorem: Discussion 0.7.- Monetary Lotteries 0.8.- Risk Aversion References Allais, M. “Le comportement de l’homme rationnel devant le risque, critique des postulats at axiomes de l’école Américaine,”Econometrica 21, 1953. Arrow, K.J. Essays in the Theory of Risk Bearing. Chicago: Markham, 1971. Mas-Colell, A., M. Whinston, and J. Green. Microeconomic Theory. Oxford University Press, 1995. von Neumann, J. and O. Morgenstern. The Theory of Games and Economic Behavior. Princeton: Princeton University Press, 1944. Pratt, J. “Risk Aversion in the Small and in the Large,”Econometrica 32, 1964. 1 Introduction to Game Theory and Some Exam- ples 1.1.- Aim of Game Theory 1.2.- Decision Theory (one agent) 1.3.- Decision Theory (two players): Game Theory 1.4.- History of Game Theory 1.5.- Non-cooperative versus Cooperative Games 1.6.- Examples References Aumann, R. and M. Maschler. “Game Theoretic Analysis of a Bankruptcy Problem from the Talmud,”Journal of Economic Theory 36, 1985. Bertrand, J. “Théorie Mathématique de la Richesse Sociale,”Journal des Savants 67, 1883. Cournot, A.A. Recherches sur les principes mathématiques de la théorie des richesses. Paris: L. Hachette, 1838. Edgeworth, F.Y. Papers Relating to Political Economy (3 volumes). London: Royal Economic Society, 1925. Gale, D. “A Curious Nim-type Game,” American Mathematical Monthly 81, 1974. Hotelling, H. “Stability in Competition,”Economic Journal 39, 1929. Moulin, H. Axioms of Cooperative Decision Making (1st ed.). Cambridge: Cam- bridge University Press. Econometric Society Monographs, 1988. Nasar, S. A Beautiful Mind. New York: Simon & Schuster, 1998. Nash. J. “Equilibrium Points in N Person Games,”Proceedings of the National Academy of Sciences 36, 1950. Nash, J. “The Bargaining Problem,”Econometrica 18, 1950. von Neumann, J. “Zur Theorie der Gesellschaftsspiele,”Mathematische Annalen 100, 1928. von Neumann, J. and O. Morgenstern. The Theory of Games and Economic Behavior. Princeton: Princeton University Press, 1944. Ru¢ n, R.J. “Cournot Oligopoly and Competitive Behavior,” Review of Eco- nomic Studies 38, 1971. Schmeidler, D. “The Nucleolus of a Characteristic Function Game,”SIAM Jour- nal on Applied Mathematics 17, 1969. Shapley, L.S. “The Solutions of a Symmetric Market Game,”Annals of Mathe- matical Studies 40, 1959. Shapley, L.S. “Some Topics in Two-person Games,”in Advances in Game The- ory, editors: M. Dresher, J. Shapley, and A. Tucker. Princeton: Princeton University Press, 1964. von Stackelberg, H.F. Markform und Gleichgewicht. Vienna: Julius Springer, 1934. Zermelo, E. “Über eine Anwendungen der Mengenlehre auf die Theorie der Schachspiels,” Proceedings of the International Fifth Congress of Mathematicians. Cambridge: Cambridge University Press, 1913. 2 2 Games in Normal Form 2.1.- De…nition and Examples 2.2.- Nash Equilibrium 2.3.- Interpretation of Nash Equilibrium 2.4.- The Mixed Extension 2.5.- Computing Nash Equilibria 2.6.- General Existence Theorem 2.7.- Two-person Zero-sum Games: The Minimax Theorem 2.8.- Fictitious Play References Aumann, R. “Acceptable Points in General Cooperative n person Games,” in Contributions to the Theory of Games IV. Princeton: Princeton University Press, 1959. Bernheim, B., B. Peleg, and M. Whinston. “Coalition-proof Nash Equilibria I: Concepts,”Journal of Economic Theory 42, 1987. Debreu, G. “A Social Equilibrium Existence Theorem,”Proceedings of the Na- tional Academy of Sciences 38, 1952. Fan, K. “Fixed Point and Minimax Theorems in Locally Convex Topological Linear Spaces,”Proceedings of the National Academy of Sciences 38, 1952. Glicksberg, I.L. “A Further Generalization of the Kakutani Fixed Point Theorem with Application to Nash Equilibrium Points,”Proceedings of the National Academy of Sciences 38, 1952. Harsanyi, J. and R. Selten. A General Theory of Equilibrium Selection in Games. MIT Press, 1988. Kakutani, S. “A Generalization of Brouwer’sFixed Point Theorem,”Duke Math- ematical Journal 8, 1941. Krishna, V. “Learning in Games with Stochastic Complementarities,” mimeo, 1991. Milgrom, P. and J. Roberts. “Adaptive and Sophisticated Learning in Normal Form Games,”Games and Economic Behavior 3, 1991. Miyasawa, K. “On the Convergence of the Learning Process in a 2 2 Non Zero-sum Two Person Game,” Economic Research Program, Princeton University, research memorandum No. 33, 1961. Monderer, D. and A. Sela. “A 2 2 Game without the Fictitious Play Property,” Games and Economic Behavior 14, 1996. 3 Monderer, D. and L.S. Shapley. “Fictitious Play Property for Games with Iden- tical Interests,”Journal of Economic Theory 68, 1996. Nash. J. “Equilibrium Points in n Person Games,”Proceedings of the National Academy of Sciences 36, 1950. Nash, J. “Non-cooperative Games,”Annals of Mathematics 54, 1951. von Neumann, J. and O. Morgenstern. The Theory of Games and Economic Behavior. Princeton: Princeton University Press, 1944. Robinson, J. “An Iterative Method of Solving a Game,”Annals of Mathematics 54, 1951. Schelling, T. The Strategy of Con‡ict. Cambridge: Harvard University Press, 1960. Shapley, L.S. “Some Topics in Two-person Games,”in Advances in Game The- ory, editors: M. Dresher, J. Shapley, and A. Tucker. Princeton: Princeton University Press, 1964. Tarski, A. “A Lattice-Theoretical Fixpoint Theorem and Its Applications,”Pa- ci…c Journal of Mathematics 5, 1955. Vives, X. “Nash Equilibrium with Strategic Complementarities,” Journal of Mathematical Economics 19, 1990. 3 Games in Extensive Form 3.1.- Preliminaries 3.2.- Perfect Information 3.3.- Nash Equilibrium: Backwards Induction and Kuhn’sTheorem 3.4.- Imperfect Information References Kuhn, W. “Extensive Games and the Problem of Information,”Annals of Math- ematical Study 28, 1953. Kuhn, W. and A. Tucker (editors). Contributions to the Theory of Games II. Princeton: Princeton University Press, 1953. Zermelo, E. “Über eine Anwendungen der Mengenlehre auf die Theorie der Schachspiels,” Proceedings of the International Fifth Congress of Mathematicians. Cambridge: Cambridge University Press, 1913. 4 4 Nash Equilibrium and Related Issues 4.1.- Introduction 4.2.- Dominant Strategies 4.3.- Elimination of Dominated Strategies 4.4.- Subgame Perfect Equilibrium 4.5.- Trembling-hand Perfect Equilibrium 4.6.- Perfect Equilibrium in the Normal Form 4.7.- Perfect Equilibrium and Undominated Strategies 4.8.- Proper Equilibrium 4.9.- Correlated Equilibrium References Aumann, R. “Subjectivity and Correlation in Randomized Strategies,”Journal of Mathematical Economics 1, 1974. Bernheim, B. “Rationalizable Strategic Behavior,”Econometrica 53, 1984. Calvó-Armengol, A. “The Set of Correlated Equilibria of 2 2 Games,”mimeo, 2003. http://selene.uab.es/acalvo/correlated.pdf Foster, D. and R. Vohra. “Calibrated Learning and Correlated Equilibrium,” Games and Economic Behavior 21, 1997. Fudenberg, D. and D. Levine. “Conditional Universal Consistency,”Games and Economic Behavior 29, 1999. Hart, S. and A. Mas-Colell. “A Simple Adaptive Procedure Leading to Corre- lated Equilibrium,”Econometrica 68, 2000. Hart, S. and A. Mas-Colell. “A General Class of Adaptive Strategies,”Journal of Economic Theory 98, 2001. Hillas , J. “On the De…nition of the Strategic Stability of Equilibria,”Economet- rica 58, 1990. Kholberg, E. and J.F. Mertens. “On the Strategic Stability of Equilibria,”Econo- metrica 54, 1986. Moulin, H. “Dominance Solvable Voting Schemes,”Econometrica 47, 1979. Moulin H. “On Strategy Proofness and Single-Peakedness,” Public Choice 35, 1980. Myerson, R. “Re…nements of the Nash Equilibrium Concept,” International Journal of Game Theory 7, 1978. Pearce, D. “Rationalizable Strategic Behavior and the Problem of Perfection,” Econometrica 52, 1984. 5 Rosenthal, R. “Games of Perfect Information, Predatory Pricing and the Chain- store Paradox,”Journal of Economic Theory 25, 1981. Selten, R. “Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetrgheit,” Zeitschrift für die gesamte Staatswissenschaft 12, 1965. Selten, R. “Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games,”International Journal of Game Theory 4, 1975. van Damme, E. Stability and Perfection of Nash Equilibria, Springer-Verlag, 1991. 5 Repeated Games 5.1.- Introduction 5.2.- Strategies 5.3.- Payo¤s 5.4.- “Folk”Theorems 5.5.- Stochastic Games References Aumann, R. “Survey of Repeated Games,”in Essays in Game Theory and Math- ematical Economics in Honor of Oskar Morgenstern, 1981. Aumann, R. and L. Shapley. “Long Term Competition -A Game Theoretic Analysis,”Mimeo, The Hebrew University, 1976. Benoît, J.P. and V. Krisnha. “Finitely Repeated Games,” Econometrica 53, 1985. Benoît, J.P. and V. Krisnha. “Nash Equilibria of Finitely Repeated Games,” International Journal of Game Theory 16, 1987. Friedman, J. “A Non-cooperative Equilibrium for Supergames,”The Review of Economic Studies 38, 1971. Fudenberg, D. and E. Maskin. “The Folk Theorem in Repeated Games with Discounting or with Incomplete Information,”Econometrica 54, 1986. Lockwood, B. “The Folk Theorem in Stochastic Games with and without Dis- counting,”Birkbeck College Discussion Paper in Economics 18, 1990. Massó, J. and A. Neme. “Equilibrium Payo¤s of Dynamic Games,”International Journal of Game Theory 25, 1996. Rubinstein,
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-